Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, Issue 3, Pages 48–66 (Mi vspui135)  

This article is cited in 4 scientific papers (total in 4 papers)

Applied mathematics

Codifferentiable functions in Banach spaces: methods and applications to problems of variation calculus

V. F. Demyanov, M. V. Dolgopolik

St. Petersburg State University, St. Petersburg 199034, Russian Federation
Full-text PDF (308 kB) Citations (4)
References:
Abstract: For the study of special classes of nonsmooth functions, specific tools and methods are usually employed. Thus, for the class of qusidifferentiable functions, such a tool is Quasidifferential Calculus. The notion of codifferential allows one to construct continuous approximations of nonsmooth functions. This approach is investigated in detail for the finite-dimensional case. In the present paper, the notion of codifferential is generalized to the case of abstract spaces. Calculus of codifferentials is consrtucted, necessary conditions for an extremum of a codifferentiable function defined on a normed space are formulated, a numerical method for finding stationary points of the functional (the method of codifferential descent) is derived, a convergence theorem is proved. The efficiency of the theory described is demonstrated on some problems of Calculus of Variations. By means of the notion of codifferential, all known optimality conditions for classical variational problems were almost automatically obtained as well as necessary conditions for a minmax variational problem. Bibliogr. 17.
Keywords: nonsmooth analysis, codifferentiable function, method of codifferential descent, penalty function, calculus of variations.
Received: March 21, 2013
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. F. Demyanov, M. V. Dolgopolik, “Codifferentiable functions in Banach spaces: methods and applications to problems of variation calculus”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3, 48–66
Citation in format AMSBIB
\Bibitem{DemDol13}
\by V.~F.~Demyanov, M.~V.~Dolgopolik
\paper Codifferentiable functions in Banach spaces: methods and applications to problems of variation calculus
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2013
\issue 3
\pages 48--66
\mathnet{http://mi.mathnet.ru/vspui135}
Linking options:
  • https://www.mathnet.ru/eng/vspui135
  • https://www.mathnet.ru/eng/vspui/y2013/i3/p48
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:541
    Full-text PDF :156
    References:93
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025