Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2014, Issue 2, Pages 5–11 (Mi vspui180)  

Applied mathematics

The generalized Hadamard matrix norms

N. A. Balonina, M. B. Sergeevb

a Saint Petersburg State University of Aerospace Instrumentation, 199406, St. Petersburg, Russia Federation
b Institute of Information and Control Systems of the National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia Federation
References:
Abstract: The concept of quasi-orthogonal matrices ($m$-matrices, minimax matrices) with the quality to have an extremely small value of the maximum element after normalization of their columns or rows is introduced ($m$-norm). Cases to achieve the strict minimum of $m$-norm — Hadamard matrices and a local minimum — generalized Hadamard matrices of odd and even orders are differed. $m$-matrices by the number of their levels — values that take their items are classified. Apart from the Hadamard and Belevich matrices, examples of odd order two- and three-levels matrices Mersenne and Fermat are observed, including even modular duplex Euler matrices replacing matrix Belevich when they do not exist. The formulas to calculate the $M$-matrices and characteristic weights of the right side of their orthogonal columns condition are described. To assess the proximity of $M$-matrices to the Hadamard matrices the weighted $m$-norm ($h$-norm) is proposed, it's equal to the unity for the any Hadamard matrix. Histograms $h$-norms for the family the Hadamard matrices are given. The existence of all Mersenne and Euler matrices for odd and odd orders related 4 are noted. A problem to construct the minimax matrices of Fermat matrix orders is indicated. The structural features and formulas of weighting factors as the basis of alternative definitions of the matrices are noted. Bibliogr. 8. Il. 1.
Keywords: orthogonal matrices, Hadamard matrices, Belevich matrices, Mersenne matrices, Fermat matrices, Euler matrices, $M$-matrices, quasi-matrices, Hadamard norm.
Received: December 19, 2013
Document Type: Article
UDC: 519.61:511-33
Language: Russian
Citation: N. A. Balonin, M. B. Sergeev, “The generalized Hadamard matrix norms”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2, 5–11
Citation in format AMSBIB
\Bibitem{BalSer14}
\by N.~A.~Balonin, M.~B.~Sergeev
\paper The generalized Hadamard matrix norms
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2014
\issue 2
\pages 5--11
\mathnet{http://mi.mathnet.ru/vspui180}
Linking options:
  • https://www.mathnet.ru/eng/vspui180
  • https://www.mathnet.ru/eng/vspui/y2014/i2/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :126
    References:53
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025