Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2016, Issue 2, Pages 87–100
DOI: https://doi.org/10.21638/11701/spbu10.2016.209
(Mi vspui293)
 

This article is cited in 1 scientific paper (total in 1 paper)

Control processes

Numerical methods for solving optimal control for Stefan problems

S. A. Nekrasov, V. S. Volkov

South-Russian State Politechnical University, 132, ul. Prosveschenia, Novocherkassk, 346428, Russian Federation
Full-text PDF (533 kB) Citations (1)
References:
Abstract: The article describes the mathematical model and a numerical method for the calculation and optimization of temperature fields with regard to phase transformations and the nonlinear material properties. It proposes a finite-difference method and a computer program that will effectively implement the computer simulation and optimization of thermal processes during melting and crystallization of the product. Direct Stefan problem was solved on the basis of one of the options through “enthalpic” method. The solution of the dual problem is found by smoothing the concentrated heat capacity and other parameters and characteristics of a feature such as a delta function. The article deals with a number of examples of optimization problems under various restrictions: minimizing energy consumption for melting the material, finding the maximum (minimum) temperature field, as well as two-sided estimate gradient of the solution at a given point in the area. In the above case, the functions of control are the source of the bulk power density, the values of which are located in a strip of arbitrary width. The results can be used in the practice of research and design in the field of metallurgy, electrical appliances, сryogenic etc. Refs 12. Figs 7. Tables 3.
Keywords: Stefan problem, optimal control, temperature field, phase transitions, enthalpy method, smoothing.
Received: October 14, 2015
Accepted: February 25, 2016
Bibliographic databases:
Document Type: Article
UDC: 532.546:551.340
Language: Russian
Citation: S. A. Nekrasov, V. S. Volkov, “Numerical methods for solving optimal control for Stefan problems”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2016, no. 2, 87–100
Citation in format AMSBIB
\Bibitem{NekVol16}
\by S.~A.~Nekrasov, V.~S.~Volkov
\paper Numerical methods for solving optimal control for Stefan problems
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2016
\issue 2
\pages 87--100
\mathnet{http://mi.mathnet.ru/vspui293}
\crossref{https://doi.org/10.21638/11701/spbu10.2016.209}
\elib{https://elibrary.ru/item.asp?id=26415562}
Linking options:
  • https://www.mathnet.ru/eng/vspui293
  • https://www.mathnet.ru/eng/vspui/y2016/i2/p87
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :61
    References:62
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025