Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2023, Volume 19, Issue 4, Pages 423–442
DOI: https://doi.org/10.21638/11701/spbu10.2023.401
(Mi vspui593)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials

D. P. Goloskokova, A. V. Matrosovb, I. V. Olemskoyb

a Emperor Alexander I St. Petersburg State Transport University, 9, Moskovsky pr., St. Petersburg, 190031, Russian Federation
b St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (416 kB) Citations (1)
References:
Abstract: The problem of bending a thin isotropic rectangular plate clamped on all four sides under the action of a normal load uniformly distributed over its surface is considered. An analytical solution of the boundary value problem for the resolving differential equation with respect to the normal deflection of the plate is obtained by the method of L. V. Kantorovich using special-type polynomials satisfying homogeneous boundary conditions. A feature of these polynomials is the so-called ‘‘quasi-orthogonality" property of the first and second derivatives, which leads to the splitting of the system of ordinary differential equations of the L. V. Kantorovich method into separate ordinary differential equations that are easily solved analytically. However, this property of polynomials is only approximately fulfilled. Two solutions are compared: an analytical one under the assumption of ‘‘quasi-orthogonality" of the first and second derivatives of polynomials and a numerical-analytical one without this assumption. The stress-strain state in the neighborhoods of corner points has been studied. It is shown that the moments and shear forces tend to zero when approaching the corners of the plate, as well as a double change in the sign of the shear force on the edge of the plate in the neighborhoods of the corner points.
Keywords: isotropic plate, bending of a thin isotropic plate, numerical-analytical methods, clamped plate, L. V. Kantorovich method, orthogonal polynomials, Jacobi polynomials.
Received: July 1, 2023
Accepted: October 12, 2023
Document Type: Article
UDC: 539.3+519.6
Language: Russian
Citation: D. P. Goloskokov, A. V. Matrosov, I. V. Olemskoy, “Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023), 423–442
Citation in format AMSBIB
\Bibitem{GolMatOle23}
\by D.~P.~Goloskokov, A.~V.~Matrosov, I.~V.~Olemskoy
\paper Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2023
\vol 19
\issue 4
\pages 423--442
\mathnet{http://mi.mathnet.ru/vspui593}
\crossref{https://doi.org/10.21638/11701/spbu10.2023.401}
Linking options:
  • https://www.mathnet.ru/eng/vspui593
  • https://www.mathnet.ru/eng/vspui/v19/i4/p423
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025