Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2023, Volume 19, Issue 4, Pages 529–539
DOI: https://doi.org/10.21638/11701/spbu10.2023.409
(Mi vspui601)
 

Computer science

Deep neural network based resource allocation in D2D wireless networks

Q. Sun, Y. Zhang, H. Wu, O. L. Petrosian

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
References:
Abstract: The increased complexity of future 5G wireless communication networks presents a fundamental issue for optimal resource allocation. This continuous, constrained optimal control problem must be solved in real-time since the power allocation should be consistent with the instantly evolving channel state. This paper emphasizes the application of deep learning to develop solutions for radio resource allocation problems in multiple-input multiple-output systems. We introduce a supervised deep neural network model combined with particle swarm optimization to address the issue using heuristic-generated data. We train the model and evaluate its ability to anticipate resource allocation solutions accurately. The simulation result indicates that the trained DNN-based model can deliver the near-optimal solution.
Keywords: multiple-input multiple-output systems, deep neural networks, heuristics, particle swarm optimization.
Funding agency Grant number
Saint Petersburg State University 94062114
This work was supported by the St. Petersburg State University (ID project: 94062114).
Received: September 19, 2023
Accepted: October 12, 2023
Document Type: Article
UDC: 519.217
MSC: 90C40
Language: English
Citation: Q. Sun, Y. Zhang, H. Wu, O. L. Petrosian, “Deep neural network based resource allocation in D2D wireless networks”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023), 529–539
Citation in format AMSBIB
\Bibitem{SunZhaWu23}
\by Q.~Sun, Y.~Zhang, H.~Wu, O.~L.~Petrosian
\paper Deep neural network based resource allocation in D2D wireless networks
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2023
\vol 19
\issue 4
\pages 529--539
\mathnet{http://mi.mathnet.ru/vspui601}
\crossref{https://doi.org/10.21638/11701/spbu10.2023.409}
Linking options:
  • https://www.mathnet.ru/eng/vspui601
  • https://www.mathnet.ru/eng/vspui/v19/i4/p529
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :55
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025