Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2024, Volume 20, Issue 1, Pages 20–33
DOI: https://doi.org/10.21638/11701/spbu10.2024.103
(Mi vspui607)
 

This article is cited in 4 scientific papers (total in 4 papers)

Computer science

Synthetic data generation methods for training neural networks in the task of segmenting the level of crop nitrogen status in images of unmanned aerial vehicles in an agricultural field

A. E. Molina, I. S. Blekanova, E. P. Mitrofanovab, O. A. Mitrofanovaba

a St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b Agrophysical Research Institute, 14, Grazhdansky pr., St. Petersburg, 195220, Russian Federation
References:
Abstract: This study is devoted to the automatization of the image masks' construction of large-sized agricultural objects in precision farming tasks for training neural network methods for crop's nitrogen status analysis using georeferenced images. The scientific direction is extremely relevant because it allows to automate and replace the manual process of data labeling, significantly reducing the cost of preparing training samples. In the paper, four new synthetic data generation methods are proposed for training neural networks aimed at UAV image segmentation by the level of crop nitrogen supply on an agricultural field. In particular, the paper gives a description of synthetic data generation algorithms based on nitrogen covering with lines, parabolas, and areas. Experiments were carried out to test and evaluate the quality of these algorithms using eight modern image segmentation methods: two classical machine learning methods (Random Forest and XGBoost), four convolutional neural network methods based on U-Net architecture, and two transformers (TransUnet and UnetR). The results showed that two algorithms based on areas gave the best accuracy for convolutional neural networks and transformers — 98–100 %. Classical machine learning methods showed very low values for all quality metrics — 27–44 %.
Keywords: nitrogen level segmentation, deep learning, machine learning, synthetic data generation, UAV images, remote sensing data labeling, smart agriculture.
Received: November 15, 2023
Accepted: December 26, 2023
Document Type: Article
UDC: 004.93
MSC: 93B03
Language: Russian
Citation: A. E. Molin, I. S. Blekanov, E. P. Mitrofanov, O. A. Mitrofanova, “Synthetic data generation methods for training neural networks in the task of segmenting the level of crop nitrogen status in images of unmanned aerial vehicles in an agricultural field”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:1 (2024), 20–33
Citation in format AMSBIB
\Bibitem{MolBleMit24}
\by A.~E.~Molin, I.~S.~Blekanov, E.~P.~Mitrofanov, O.~A.~Mitrofanova
\paper Synthetic data generation methods for training neural networks in the task of segmenting the level of crop nitrogen status in images of unmanned aerial vehicles in an agricultural field
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2024
\vol 20
\issue 1
\pages 20--33
\mathnet{http://mi.mathnet.ru/vspui607}
\crossref{https://doi.org/10.21638/11701/spbu10.2024.103}
Linking options:
  • https://www.mathnet.ru/eng/vspui607
  • https://www.mathnet.ru/eng/vspui/v20/i1/p20
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025