Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2024, Volume 20, Issue 1, Pages 34–51
DOI: https://doi.org/10.21638/11701/spbu10.2024.104
(Mi vspui608)
 

This article is cited in 3 scientific papers (total in 3 papers)

Computer science

Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder

V. H. Nguyen, N. N. Tran

Le Quy Don Technical University, 236, ul. Hoang Quoc Viet, Hanoi, 140000, The Socialist Republic of Vietnam
References:
Abstract: Despite the many advantages offered by Host Intrusion Detection Systems (HIDS), they are rarely adopted in mainstream cybersecurity strategies. Unlike Network Intrusion Detection Systems, a HIDS is the last layer of defence between potential attacks and the underlying OSs. One of the main reasons behind this is its poor capabilities to adequately protect against zero-day attacks. With the rising number of zero-day exploits and related attacks, this is an increasingly imperative requirement for a modern HIDS. In this paper variational long short-term memory — recurrent autoencoder approach which improves zero-day attack detection is proposed. We have practically implemented our model using TensorFlow and evaluated its performance using benchmark ADFA-LD and UNM datasets. We have also compared the results against those from notable publications in the area.
Keywords: HIDS, anomaly detection, variational autoencoder, deep learning.
Received: October 1, 2023
Accepted: December 26, 2023
Document Type: Article
UDC: 519.217
MSC: 90C40
Language: English
Citation: V. H. Nguyen, N. N. Tran, “Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:1 (2024), 34–51
Citation in format AMSBIB
\Bibitem{NguTra24}
\by V.~H.~Nguyen, N.~N.~Tran
\paper Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2024
\vol 20
\issue 1
\pages 34--51
\mathnet{http://mi.mathnet.ru/vspui608}
\crossref{https://doi.org/10.21638/11701/spbu10.2024.104}
Linking options:
  • https://www.mathnet.ru/eng/vspui608
  • https://www.mathnet.ru/eng/vspui/v20/i1/p34
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025