Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2024, Volume 20, Issue 2, Pages 289–297
DOI: https://doi.org/10.21638/spbu10.2024.213
(Mi vspui626)
 

Control processes

Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory

J. Zhoua, O. L. Petrosyanab, H. Gaob

a St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b Qingdao University, 308, Ningxia Road, Qingdao, 266071, China
References:
Abstract: This paper investigates the issue of pollution control dynamic games defined over a finite time horizon, with a particular focus on parameter uncertainty within the ecosystem. We employ a dynamic Bayesian learning method to estimate uncertain parameters in the dynamic equation, differing from traditional single-instance Bayesian learning which does not involve continuous signal reception and belief updating. Our study validates the effectiveness of the dynamic Bayesian learning approach, demonstrating that, over time, the beliefs of the players progressively converge towards the true values of the unknown parameters. Through numerical simulations, we illustrate the convergence process of beliefs and compare optimal control strategies under different scenarios. The findings of this paper offer a new perspective for understanding and addressing the uncertainties in pollution control problems.
Keywords: dynamic Bayesian learning, pollution control games, ecological uncertainty, optimal control strategy.
Funding agency Grant number
Saint Petersburg State University 94062114
This research was supported by Saint Petersburg State University (ID project: N 94062114).
Received: January 21, 2024
Accepted: March 12, 2024
Document Type: Article
UDC: 519.237.5, 519.83
MSC: 91A25
Language: English
Citation: J. Zhou, O. L. Petrosyan, H. Gao, “Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:2 (2024), 289–297
Citation in format AMSBIB
\Bibitem{ZhoPetGao24}
\by J.~Zhou, O.~L.~Petrosyan, H.~Gao
\paper Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2024
\vol 20
\issue 2
\pages 289--297
\mathnet{http://mi.mathnet.ru/vspui626}
\crossref{https://doi.org/10.21638/spbu10.2024.213}
Linking options:
  • https://www.mathnet.ru/eng/vspui626
  • https://www.mathnet.ru/eng/vspui/v20/i2/p289
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :76
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026