Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2024, Volume 20, Issue 3, Pages 310–323
DOI: https://doi.org/10.21638/spbu10.2024.301
(Mi vspui628)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

Mathematical modeling of bending of a thin orthotropic plate clamped along the contour

O. V. Germider, V. N. Popov

Northern (Arctic) Federal University named after M. V. Lomonosov, 17, nab. Severnоi Dviny, Arkhangelsk, 163002, Russian Federation
References:
Abstract: Within the framework of Kirchhoff's theory, a new approach to constructing a solution to the problem of modeling the bending of a thin rectangular orthotropic plate clamped along the contour, which is under the influence of a load normally distributed over its surface, is proposed. the solution to the inhomogeneous biharmonic equation for an orthotropic plate is obtained in the form of a partial sum of a double series in Chebyshev polynomials of the first kind. To find the coefficients in this expansion, the boundary value problem is reduced by the collocation method to a system of linear algebraic equations in matrix form using the properties of these polynomials. Based on matrix and differential transformations, expressions for bending moments and shearing forces are obtained. the results of calculations of the bending of the middle surface of the plate under different loads on the plate are presented, which demonstrate the effectiveness of the proposed approach.
Keywords: collocation method, biharmonic equation, Chebyshev polynomials of the first kind, bending of a thin orthotropic plate.
Funding agency Grant number
Russian Science Foundation 24-21-00381
This research was supported by the Russian Science Foundation, project N 24-21-00381, https://rscf.ru/project/24-21-00381/.
Received: April 24, 2024
Accepted: June 25, 2024
Document Type: Article
UDC: 519.635.1, 519.635.4
MSC: 35C11
Language: Russian
Citation: O. V. Germider, V. N. Popov, “Mathematical modeling of bending of a thin orthotropic plate clamped along the contour”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:3 (2024), 310–323
Citation in format AMSBIB
\Bibitem{GerPop24}
\by O.~V.~Germider, V.~N.~Popov
\paper Mathematical modeling of bending of a thin orthotropic plate clamped along the contour
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2024
\vol 20
\issue 3
\pages 310--323
\mathnet{http://mi.mathnet.ru/vspui628}
\crossref{https://doi.org/10.21638/spbu10.2024.301}
Linking options:
  • https://www.mathnet.ru/eng/vspui628
  • https://www.mathnet.ru/eng/vspui/v20/i3/p310
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :33
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025