Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2024, Volume 20, Issue 3, Pages 416–427
DOI: https://doi.org/10.21638/spbu10.2024.309
(Mi vspui636)
 

This article is cited in 1 scientific paper (total in 1 paper)

Control processes

On the boundary control problem for a pseudo-parabolic equation with involution

F. N. Dekhkonov

Namangan State University, 316, ul. Uychi, Namangan, 160136, Uzbekistan
Full-text PDF (235 kB) Citations (1)
References:
Abstract: Previously, some control problems for the pseudo-parabolic equation independent of involution were considered. In this paper, we consider a boundary control problem associated with a pseudo-parabolic equation with involution in a bounded one-dimensional domain. On the part of the border of the considered domain, the value of the solution with control function is given. Restrictions on the control are given in such a way that the average value of the solution in the considered domain gets a given value. The problem given by the method of separation of variables is reduced to the Volterra integral equation of the second kind. The existence of the control function was proved by the Laplace transform method.
Keywords: boundary problem, Volterra integral equation, control function, Laplace transform, involution.
Received: March 9, 2024
Accepted: June 25, 2024
Document Type: Article
UDC: 517.977
MSC: 35K70
Language: English
Citation: F. N. Dekhkonov, “On the boundary control problem for a pseudo-parabolic equation with involution”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:3 (2024), 416–427
Citation in format AMSBIB
\Bibitem{Dek24}
\by F.~N.~Dekhkonov
\paper On the boundary control problem for a pseudo-parabolic equation with involution
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2024
\vol 20
\issue 3
\pages 416--427
\mathnet{http://mi.mathnet.ru/vspui636}
\crossref{https://doi.org/10.21638/spbu10.2024.309}
Linking options:
  • https://www.mathnet.ru/eng/vspui636
  • https://www.mathnet.ru/eng/vspui/v20/i3/p416
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025