Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2008, Number 2(3), Pages 87–98 (Mi vtgu103)  

MECHANICS

The Design of Univrsal Algorithm Which Implements Inhomogeneous Dirichlet and Neumann Boundary Conditions in Spectral Element Method

A. M. Bubenchikov, V. S. Poponin, V. N. Mel'nikova

Tomsk State University
Abstract: The computation technology in constructing two dimensional viscous fluid dynamics problems by means of spectral element method is described in this paper. The given method allows to find solution of high accuracy on coarse unstructured grids. The universal algorithm for boundary conditions of different types was developed. Testing problems such as lid-driven cavity flow and backward facing step are presented.
Keywords: Spectral elements method, Navier–Stokes equations, unstructured grids, viscous fluid.

Accepted: July 19, 2008
Document Type: Article
UDC: 532+681.3
Language: Russian
Citation: A. M. Bubenchikov, V. S. Poponin, V. N. Mel'nikova, “The Design of Univrsal Algorithm Which Implements Inhomogeneous Dirichlet and Neumann Boundary Conditions in Spectral Element Method”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 2(3), 87–98
Citation in format AMSBIB
\Bibitem{BubPopMel08}
\by A.~M.~Bubenchikov, V.~S.~Poponin, V.~N.~Mel'nikova
\paper The Design of Univrsal Algorithm Which Implements Inhomogeneous Dirichlet and Neumann Boundary Conditions in Spectral Element Method
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2008
\issue 2(3)
\pages 87--98
\mathnet{http://mi.mathnet.ru/vtgu103}
Linking options:
  • https://www.mathnet.ru/eng/vtgu103
  • https://www.mathnet.ru/eng/vtgu/y2008/i2/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025