Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2024, Number 88, Pages 37–52
DOI: https://doi.org/10.17223/19988621/88/4
(Mi vtgu1068)
 

MATHEMATICS

Some properties of topological hedgehogs

D. Yu. Lyakhovetsa, A. V. Osipovba

a N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
b Ural Federal University, Yekaterinburg, Russian Federation
References:
Abstract: The topological spaces called Euclidean hedgehogs are considered. These are subspaces of the Euclidean spaces $\mathbf{R^n}$ with the following property: together with each of their points, they contain the entire segment connecting the given point with the point of origin.
It is proved that for all $n\geqslant 2$ there exist pairwise non-homeomorphic Euclidean hedgehogs in $\mathbf{R^n}$. It is also proved that for every countable Euclidean hedgehog there exists a flat hedgehog homeomorphic to it.
We also consider two topological spaces: the quasimetric hedgehog and the quotient hedgehog, which have the following cardinal and hereditary invariants: weight, character, density, spread, extent, cellularity, tightness, number of open sets, and Lindelof number. Finally, sequential hedgehogs are considered that are topologically embedded in function spaces. Criteria are given for the topological embedding of sequential hedgehogs in the space of continuous functions and in the space of Baire functions.
Keywords: Euclidean hedgehog, cardinal invariants, quasi-metric, factor topology, Sorgenfrey line, metric hedgehog, sequential hedgehog, space of continuous functions, space of Baire functions, topological embedding.
Received: 20.03.2023
Accepted: April 10, 2024
Document Type: Article
UDC: 515.122
Language: Russian
Citation: D. Yu. Lyakhovets, A. V. Osipov, “Some properties of topological hedgehogs”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 88, 37–52
Citation in format AMSBIB
\Bibitem{LyaOsi24}
\by D.~Yu.~Lyakhovets, A.~V.~Osipov
\paper Some properties of topological hedgehogs
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2024
\issue 88
\pages 37--52
\mathnet{http://mi.mathnet.ru/vtgu1068}
\crossref{https://doi.org/10.17223/19988621/88/4}
Linking options:
  • https://www.mathnet.ru/eng/vtgu1068
  • https://www.mathnet.ru/eng/vtgu/y2024/i88/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025