Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2011, Number 1(13), Pages 47–54 (Mi vtgu173)  

MATHEMATICS

$K$-contact structures on Lie groups

Y. V. Slavolyubova

Kemerovo Institute (Branch) of Russian State University of Trade and Economics
References:
Abstract: In this paper, left invariant $K$-contact structures on Lie groups are considered. The main results are Theorem 1 expressing the Ricci tensor of a Lie group $G$ by the Ricci tensor of a quotient space $M=G/F_0$, where $F_0$ is a one-parametrical subgroup of the Reeb field $\xi$, and Theorem 2 establishing the connection between the tensor $N^{(1)}$ of a contact metric structure on $G$ and the Nijenhuis tensor $N$ of the corresponding almost complex structure on $M=G/F_0$.
Keywords: contact Lie groups, contact metric structures, Sasakian structure, $K$-contact structures.

Accepted: December 30, 2010
Document Type: Article
UDC: 514.76
Language: Russian
Citation: Y. V. Slavolyubova, “$K$-contact structures on Lie groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 1(13), 47–54
Citation in format AMSBIB
\Bibitem{Sla11}
\by Y.~V.~Slavolyubova
\paper $K$-contact structures on Lie groups
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2011
\issue 1(13)
\pages 47--54
\mathnet{http://mi.mathnet.ru/vtgu173}
Linking options:
  • https://www.mathnet.ru/eng/vtgu173
  • https://www.mathnet.ru/eng/vtgu/y2011/i1/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:448
    Full-text PDF :96
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025