Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, Number 5(31), Pages 63–68 (Mi vtgu416)  

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On some linearly ordered topological spaces homeomorphic to the Sorgenfrey line

E. S. Sukhacheva, T. E. Khmyleva

Tomsk State University, Tomsk, Russian Federation
Full-text PDF (426 kB) Citations (2)
References:
Abstract: In this paper, we consider a topological space $S_A$ which is a modification of the Sorgenfrey line $S$ and is defined as follows: if a point $x\in A\subset S$, then the base of neighborhoods of the point $x$ is a family of intervals $\{[a,b)\colon a,b\in\mathbb R,\ a<b,\ \text{and}\ x\in[a,b)\}$. If $x\in S\setminus A$, then the base of neighborhoods of $x$ is $\{(c,d]\colon c,d\in\mathbb R,\ c<d\ \text{and}\ x\in(c,d]\}$. It is proved that for a countable subset $A\subset\mathbb R$ the closure of which in the Euclidean topology is a countable space, the space $S_A$ is homeomorphic to the space $S$. In addition, it was found that the space $S_A$ is homeomorphic to the space$S$ for any closed subset $A\subset\mathbb R$. Similar problems were considered by V. A. Chatyrko and Y. Hattori in [4], where the “arrow” topology on the set $A$ was replaced by the Euclidean topology. In this paper, we consider two special cases: $A$ is a closed subset of the line in the Euclidean topology and the closure of the set $A$ in the Euclidean topology of the line is countable.
The following results were obtained:
Let a set $A$ be closed in $\mathbb R$. Then the space $S_A$ is homeomorphic to the space $S$.
Let a countable set $A\subset\mathbb R$ be such that its closure $\overline A$ is countable relatively to $\mathbb R$. Then $S_A$ is homeomorphic to $S$.
Let $A$ be a countable closed subset in $S$. Then $S_A$ is homeomorphic to $S$.
Keywords: Sorgenfrey line, derivative set, homeomorphism, ordinal.
Received: 23.06.2014
Document Type: Article
UDC: 515.12
Language: Russian
Citation: E. S. Sukhacheva, T. E. Khmyleva, “On some linearly ordered topological spaces homeomorphic to the Sorgenfrey line”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 5(31), 63–68
Citation in format AMSBIB
\Bibitem{SukKhm14}
\by E.~S.~Sukhacheva, T.~E.~Khmyleva
\paper On some linearly ordered topological spaces homeomorphic to the Sorgenfrey line
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2014
\issue 5(31)
\pages 63--68
\mathnet{http://mi.mathnet.ru/vtgu416}
Linking options:
  • https://www.mathnet.ru/eng/vtgu416
  • https://www.mathnet.ru/eng/vtgu/y2014/i5/p63
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025