Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2015, Number 1(33), Pages 5–11
DOI: https://doi.org/10.17223/19988621/33/1
(Mi vtgu435)
 

MATHEMATICS

Dependent subspaces in $C_pC_p(X)$ and hereditary cardinal invariants

V. R. Lazarev

Tomsk State University, Tomsk, Russian Federation
References:
Abstract: In this paper, for a given arbitrary subset $B\subset C_pC_p(X)$ consisting of finite support functionals (see Definition 1.1), we prove its continuous factorizability (see Definition 0.3) through some subset $A\subset X$ satisfying the conditions $hl(A)\leqslant hl(B)$, $hd(A)\leqslant hd(B)$, and $s(A)\leqslant s(B)$.
Finite support functionals have some essential properties of linear continuous functionals. In particular, the set $B$ above may be “ranked” by subsets $B_n$ according to the number n of points in the supports of functionals. In addition, the support mapping $s_n: B_n\to E_n(X)$ is continuous (see Lemma 1.6). It permit us to formulate conditions on a topological property that are sufficient for the union $X(B)\subset X$ of the supports of the functionals from $B$ to have this topological property together with $B$ (see Theorem 2.3). Since $B$ admits continuous factorization through $X(B)$ (see Lemma 1.8) and inequalities $hl(B)\leqslant \tau$, $hd(B)\leqslant \tau$, $s(B)\leqslant \tau$ keep true under any operations from the formulation of Theorem 2.3 (see Corollary 2.4), we get a partially positive answer to the Problem 3.3 and Problem 3.4 from [3].
In addition, we extend Corollary 2.4 to all open and all canonical closed subsets of the space $C^0_pC_p(X)$ (see Corollary 2.6).
Keywords: pointwise convergence topology, hereditary cardinal invariants.
Received: 05.11.2014
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: V. R. Lazarev, “Dependent subspaces in $C_pC_p(X)$ and hereditary cardinal invariants”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 1(33), 5–11
Citation in format AMSBIB
\Bibitem{Laz15}
\by V.~R.~Lazarev
\paper Dependent subspaces in $C_pC_p(X)$ and hereditary cardinal invariants
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2015
\issue 1(33)
\pages 5--11
\mathnet{http://mi.mathnet.ru/vtgu435}
\crossref{https://doi.org/10.17223/19988621/33/1}
\elib{https://elibrary.ru/item.asp?id=23223188}
Linking options:
  • https://www.mathnet.ru/eng/vtgu435
  • https://www.mathnet.ru/eng/vtgu/y2015/i1/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025