Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, Number 3(41), Pages 31–41
DOI: https://doi.org/10.17223/19988621/41/3
(Mi vtgu525)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients

R. K. Tagiyeva, S. A. Gashimova, V. M. Gabibovb

a Baku State University, Azerbaijan
b Lenkaran State University, Azerbaijan
Full-text PDF (435 kB) Citations (1)
References:
DOI: https://doi.org/10.17223/19988621/41/3
Abstract: In this paper, an optimal control problem for a parabolic equation with an integral boundary condition and controls in coefficients is considered. Let it be required to minimize the functional
$$ J(\nu)=\int_0^{\mathfrak{l}}|u(x;T;\nu)-y(x)|^2dx $$
on the solutions $u=u(x,t)=u(x,t;\nu)$ of the boundary value problem
\begin{gather*} u_t-(k(x,t)u_x)_x+q(x,t)u=f(x,t),\quad (x,t)\in\mathcal{Q}_T=\{(x,t): 0<x<\mathfrak{l},\ 0<t\leqslant T\}\\ u(x,0)=\varphi(x),\ 0\leqslant x\leqslant \mathfrak{l},\\ u_x(0,t)=0, \quad k(l,t)u_x(\mathfrak{l},t)=\int_0^{\mathfrak{l}}H(x)u_x(x,t)dx+g(t),\quad 0<t\leqslant T, \end{gather*}
corresponding to all allowable controls $\nu=\nu(x,t)=(k(x,t),q(x,t))$ from the set
\begin{gather*} V=\{\nu(x,t)=(k(x,t),q(x,t))\in H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T): 0<v<k(x,t)\leqslant\mu,\\ |k_x(x,t)|\leqslant\mu_1,\ |k_t(x,t)|\leqslant\mu_2\quad |q(x,t)|\leqslant\mu_3 \text{ a.e. on }\mathcal{Q}_T\}. \end{gather*}
Here, $l, T, v, \mu, \mu_1, \mu_2, \mu_3>0$ are given numbers and $y(x), \varphi(x)\in W_2^1(0,\mathfrak{l})$, $H(x)\in \mathring{W}_2^1(0,\mathfrak{l})$, $f(x,t)\in L_2(\mathcal{Q}_T)$, and $g(t)\in W_2^1(0,T)$ are known functions.
The work deals with problems of correctness in formulating the considered optimal control problem in the weak topology of the space $H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T)$. Examples showing that this problem is incorrect in the general case in the strong topology of the space $H$ are presented. The objective functional is proved to be continuously Frechet differentiable and a formula for its gradient is found. A necessary condition of optimality is established in the form of a variational inequality.
Keywords: optimal control, parabolic equation, integral boundary condition, optimality condition.
Received: 15.02.2016
Bibliographic databases:
Document Type: Article
UDC: 517.977.56
Language: Russian
Citation: R. K. Tagiyev, S. A. Gashimov, V. M. Gabibov, “On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 3(41), 31–41
Citation in format AMSBIB
\Bibitem{TagGasGab16}
\by R.~K.~Tagiyev, S.~A.~Gashimov, V.~M.~Gabibov
\paper On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2016
\issue 3(41)
\pages 31--41
\mathnet{http://mi.mathnet.ru/vtgu525}
\elib{https://elibrary.ru/item.asp?id=26224724}
Linking options:
  • https://www.mathnet.ru/eng/vtgu525
  • https://www.mathnet.ru/eng/vtgu/y2016/i3/p31
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025