Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, Number 4(42), Pages 44–57
DOI: https://doi.org/10.17223/19988621/42/5
(Mi vtgu537)
 

MATHEMATICS

Associated contact metric structures on the $7$-dimensional unit sphere $S^7$

Ya. V. Slavolyubova

Kemerovo Institute of Plekhanov Russian University of Economics, Kemerovo, Russian Federation
References:
Abstract: In this paper, we construct new examples of associated contact metric structures $(\eta, \xi, \varphi, g^J)$ on the $7$-dimensional unit sphere $S^7$, other than standard.
The construction involved a Hopf bundle $\pi: S^7\to\mathbf{CP^3}$. This projection maps affinor $\varphi$ into an almost complex structure $J$. Therefore, it became necessary to build new examples of associated almost complex structures $J$ in the $3$-dimensional complex projective space $\mathbf{CP^3}$.
Let $\Phi$ be a nondegenerate $2$-form (a Fubini–Study form). An almost complex structure $J$ is called positively associated with the form $\Phi$ if the following conditions are satisfied for any vector fields $X$, $Y$:
$$ \Phi(JX, JY)=\Phi(X, Y)\text{ and }\Phi(X, JX)>0, \text{ if } X\ne0. $$

Each positively associated almost complex structure $J$ defines a Riemannian metric $g^J$ by the equality $g(X, Y)=\Phi(X, JY)$; the metric is also called associated. The associated metric has the following properties:
$$ g(JX, JY)=g(X, JY),\ g(JX, Y)=\Phi(X, Y). $$

The positively associated almost complex structure can be obtained as follows:
$$ J=J_0(1+R)(1-R)^{-1}, $$
where $R$ is a symmetric endomorphism $R: TCP^3\to TCP^3$ anticommuting with the standard structure $J_0$,
$$ J_0= \begin{pmatrix} iI&0\\ 0&-iI \end{pmatrix}. $$

In this paper, we have found a series of matrices $R$ satisfying these conditions. Each matrix of this kind defines an associated almost complex structure in the space $\mathbf{CP^3}$. One of these matrices,
$$ R=\frac{1}{(1+|w|)^4} \begin{pmatrix} 0& \overline{R_{\alpha}^{\overline{\beta}}}\\ R_{\alpha}^{\overline{\beta}}&0 \end{pmatrix}, $$
where the block $R_{\alpha}^{\overline{\beta}}=\begin{pmatrix} \overline{w}^1w^2w^3 &0 &0\\ 0 & w^1\overline{w}^2w^3 &0\\ 0& 0& w^1w^2\overline{w}^3 \end{pmatrix}$, has been considered in more detail.
For this endomorphism, the relevant almost complex structure $J$ and a Hermite metric $g^J$ have been found in the space $\mathbf{CP}^3$. It has been verified that the constructed structure $J$ is not integrable.
Keywords: contact structures, associated contact metric structures, $7$-dimensional sphere.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-4382.2014.1
Received: 15.12.2015
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: Ya. V. Slavolyubova, “Associated contact metric structures on the $7$-dimensional unit sphere $S^7$”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 4(42), 44–57
Citation in format AMSBIB
\Bibitem{Sla16}
\by Ya.~V.~Slavolyubova
\paper Associated contact metric structures on the $7$-dimensional unit sphere~$S^7$
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2016
\issue 4(42)
\pages 44--57
\mathnet{http://mi.mathnet.ru/vtgu537}
\crossref{https://doi.org/10.17223/19988621/42/5}
\elib{https://elibrary.ru/item.asp?id=26674679}
Linking options:
  • https://www.mathnet.ru/eng/vtgu537
  • https://www.mathnet.ru/eng/vtgu/y2016/i4/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025