Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, Number 6(44), Pages 19–33
DOI: https://doi.org/10.17223/19988621/44/2
(Mi vtgu555)
 

MATHEMATICS

On a method of investigating the Steklov problem for the 3-dimensional Laplace equation with non-local boundary-value conditions

E. Yu. Mustafayeva, N. A. Aliev

Baku State University, Baku, Azerbaijan
References:
Abstract: The three-dimensional Laplace equation is considered in a domain $D\subset R^3$, convex in the direction $Ox_3$:
\begin{gather} Lu=\Delta u(x)=\frac{\partial^2u(x)}{\partial x_1^2}+\frac{\partial^2u(x)}{\partial x_2^2}+\frac{\partial^2u(x)}{\partial x_3^2}=0,\\ x=(x_1,x_2,x_3)\in D,\notag \end{gather}
with a parameter $\lambda$ under nonlocal homogeneous boundary conditions:
\begin{gather} \frac{\partial u(x)}{\partial x_3}\mid_{x_3=\gamma_k(x')}+\sum_{j=1}^2\left[\alpha_{j1}^{(k)}(x')\frac{\partial u(x)}{\partial x_1}+\alpha_{j2}^{(k)}(x')\frac{\partial u(x)}{\partial x_2}\right]\mid_{x_3=\gamma_j(x')}=\notag\\ =\lambda u(x',\gamma_k(x')), \quad x'\in\ S,\ k=1, 2,\\ u(x)=f_0(x),\quad x\in L=\overline{\Gamma}_1\cap\overline{\Gamma}_2=\partial S, \end{gather}
where $\Gamma_1$ and $\Gamma_2$ are the lower and upper half surfaces of the boundary $\Gamma$, respectively; the equations of half surfaces $\Gamma_1$ and $\Gamma_2$ $\gamma_k(\xi')$, $k=1,2$, are twice differentiable with respect to both the variables $\xi_1$, $\xi_2$; $S$ is the projection of the domain $D$ on the plane $Ox_1x_2=Ox'$; the coefficients $\alpha_{jk}^{(i)}(x')\in C(S)$, $i, j, k=1,2$, satisfy Hölder's condition in $S$; the boundary $\Gamma=\partial D$ is a Lyapunov surface, $\lambda\in C$ is a complex-valued parameter; and $L$ is the equator connecting the half-surfaces $\Gamma_1$ and $\Gamma_2$: $L=\overline{\Gamma}_1\cap\overline{\Gamma}_2$.
The presented work is devoted to the study and proof of the Fredholm property for the solution of the Steklov boundary value problem for the three-dimensional Laplace equation in a bounded domain with non-local boundary conditions where the spectral parameter appears only in the boundary condition. The applied method is new and relies on necessary conditions derived from basic relations. These relations are obtained from the second Green's formula and from an analogue of this formula. The proposed scheme was applied to a variety of problems for partial differential equations in the two-dimensional case. However, the singularities entering the necessary conditions for three-dimensional problems are multi-dimensional; for this reason, their regularization is a difficulty which is overcome by using the proposed method.
Keywords: Steklov problem, spectral problem, three-dimensional Laplace equation, nonlocal boundary conditions, necessary conditions, singularity, regularization, Fredholm property.
Received: 15.03.2016
Bibliographic databases:
Document Type: Article
UDC: 517.956.223
Language: Russian
Citation: E. Yu. Mustafayeva, N. A. Aliev, “On a method of investigating the Steklov problem for the 3-dimensional Laplace equation with non-local boundary-value conditions”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 6(44), 19–33
Citation in format AMSBIB
\Bibitem{MusAli16}
\by E.~Yu.~Mustafayeva, N.~A.~Aliev
\paper On a method of investigating the Steklov problem for the 3-dimensional Laplace equation with non-local boundary-value conditions
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2016
\issue 6(44)
\pages 19--33
\mathnet{http://mi.mathnet.ru/vtgu555}
\crossref{https://doi.org/10.17223/19988621/44/2}
\elib{https://elibrary.ru/item.asp?id=27670392}
Linking options:
  • https://www.mathnet.ru/eng/vtgu555
  • https://www.mathnet.ru/eng/vtgu/y2016/i6/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025