Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, Number 6(44), Pages 34–44
DOI: https://doi.org/10.17223/19988621/44/3
(Mi vtgu556)
 

MATHEMATICS

On the residual nilpotence of free products of nilpotent groups with central amalgamated subgroups

A. V. Rozov, E. V. Sokolov

Ivanovo State University, Ivanovo, Russian Federation
References:
Abstract: Let $G$ be a free product of nilpotent groups $A$ and $B$ with proper amalgamated subgroups $H$ and $K$. We state that if $H$ and $K$ lie in the centers of $A$ and $B$, respectively, then $G$ is residually nilpotent if and only if the ordinary free product of $A/H$ and $B/K$ possesses the same property. We also prove that if $\pi$ is a non-empty set of primes, $H$ is central in $A$, and $K$ is normal in $B$, then $G$ is residually $\pi$-finite nilpotent if and only if $G$ is residually $\pi$-finite and the free product of $A/H$ and $B/K$ is residually $\pi$-finite nilpotent. We obtain two corollaries of the second result for the cases when $A$ and $B$ have finite ranks or finite numbers of generators. In particular, we prove that if $A$ and $B$ are finitely generated, $H$ is central in $A$, and $K$ is normal in $B$, then $G$ is residually $\pi$-finite nilpotent if and only if the periodic parts of $A$ and $B$ are $\pi$-groups and the periodic parts of $A/H$ and $B/K$ are $p$-groups for some prime $p$ which belongs to $\pi$.
Keywords: nilpotent group, generalized free product of groups, residual nilpotence, residual finite nilpotence.
Received: 13.10.2016
Bibliographic databases:
Document Type: Article
UDC: 512.543
Language: Russian
Citation: A. V. Rozov, E. V. Sokolov, “On the residual nilpotence of free products of nilpotent groups with central amalgamated subgroups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 6(44), 34–44
Citation in format AMSBIB
\Bibitem{RozSok16}
\by A.~V.~Rozov, E.~V.~Sokolov
\paper On the residual nilpotence of free products of nilpotent groups with central amalgamated subgroups
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2016
\issue 6(44)
\pages 34--44
\mathnet{http://mi.mathnet.ru/vtgu556}
\crossref{https://doi.org/10.17223/19988621/44/3}
\elib{https://elibrary.ru/item.asp?id=27670393}
Linking options:
  • https://www.mathnet.ru/eng/vtgu556
  • https://www.mathnet.ru/eng/vtgu/y2016/i6/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025