Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 47, Pages 5–14
DOI: https://doi.org/10.17223/19988621/47/1
(Mi vtgu584)
 

MATHEMATICS

On an algorithm for calculating optimal strategies on an infinite time interval

V. N. Gubin

Tomsk Polytechnic University, Tomsk State University, Tomsk, Russian Federation
References:
Abstract: In this paper, a system where the interval between check times is discrete and constant is considered. The probability of failure for one element between check times is equal to $p$. The redundancy criterion satisfies the following equation:
\begin{equation} T(k,r)=\sum_{i=0}^{k-m}C_k^i p^{k-i}q^i T(r-i)+1,\tag{1} \end{equation}
which is used for finding the function $K_0(r)$.
Then, previous results related to properties of optimal strategies are stated. The main result of the paper is the solution of the problem about saving the reserve consumption. In the case $m=1$, this problem was solved by the author earlier. To solve this problem in the general case, the inequality
\begin{equation} T(m+2,r)-T(m+1,r)\leqslant 0\tag{2} \end{equation}
is used. Since $T(r)$ can be found explicitly from the conditions of the problem, inequality (2) is easy resolved. Therefore, the reserve interval $\left[m+1,m+2+\left[\frac{\ln C}{\ln A}\right]\right]$, where $K_0(r)=m+1$, is obtained. The algorithm for optimal strategy computing consists of the following steps:
  • for $r=m$, we have $K_0(m)=m$ and $T(m)=p^m/(1-p^m)$.
  • then, if we find $K_0(m+1)$, $K_0(m+2)$, …, and $K_0(r-1)$ to define $K_0(r)$, it is sufficient to compare $f(K_0(r-1),r)\geqslant f(K_0(r-1)+1,r)$, where $f(k,r)=\frac{1}{1-p^k}\left(\sum\limits_{i=1}^{k-m}C_k^i p^{k-i}q^i T(r-i)+1\right)$.
Results of the numerical simulation are represented in the final section of the paper.
Keywords: mean time between failures, element failure, system, reliability, redundancy strategy, optimal strategy, redundancy criterion.
Funding agency Grant number
Russian Science Foundation 17-11-01049
Received: 22.02.2017
Bibliographic databases:
Document Type: Article
UDC: 519.873
Language: Russian
Citation: V. N. Gubin, “On an algorithm for calculating optimal strategies on an infinite time interval”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 47, 5–14
Citation in format AMSBIB
\Bibitem{Gub17}
\by V.~N.~Gubin
\paper On an algorithm for calculating optimal strategies on an infinite time interval
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 47
\pages 5--14
\mathnet{http://mi.mathnet.ru/vtgu584}
\crossref{https://doi.org/10.17223/19988621/47/1}
\elib{https://elibrary.ru/item.asp?id=29729747}
Linking options:
  • https://www.mathnet.ru/eng/vtgu584
  • https://www.mathnet.ru/eng/vtgu/y2017/i47/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025