Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2019, Number 62, Pages 27–37
DOI: https://doi.org/10.17223/19988621/62/3
(Mi vtgu741)
 

This article is cited in 8 scientific papers (total in 8 papers)

MATHEMATICS

Left-invariant para-sasakian structures on Lie groups

N. K. Smolentsev

Fundamental Mathematics department of Kemerovo State University, Kemerovo, Russian Federation
Full-text PDF (527 kB) Citations (8)
References:
Abstract: Paracontact structures on manifolds are currently being studied quite actively; there are several different approaches to the definition of the concepts of paracontact and para-Sasakian structures. In this paper, the paracontact structure on a contact manifold $(M^{2n+1},\eta)$ is determined by an affinor $\varphi$ which has the property $\varphi^2=I-\eta\otimes\xi$, where $\xi$ is the Reeb field and $I$ is the identity automorphism. In addition, it is assumed that $d\eta(\varphi X,\varphi Y)=-d\eta(X,Y)$. This allows us to define a pseudo-Riemannian metric by the equality $g(X,Y) = d\eta(\varphi X,Y) + \eta(X)\eta(Y)$. In this paper, Sasaki paracontact structures are determined in the same way as conventional Sasaki structures in the case of contact structures. A paracontact metric structure $(\eta, \xi, \varphi, g)$ on $M^{2n+1}$ is called para-Sasakian if the almost para-complex structure $J$ on $M^{2n+1}\times\mathbf{R}$ defined by the formula $J(X, f\partial_t) = (\varphi X - f\xi, -\eta(X)\partial_t)$, is integrable. In this paper, we obtain tensors whose vanishing means that the manifold is para-Sasakian. In the case of Lie groups, it is shown that left-invariant para-Sasakian structures can be obtained as central extensions of para-Kähler Lie groups. In this case, the relations between the curvature of the para-Kähler Lie group and the curvature of the corresponding para-Sasakian Lie group are found.
Keywords: para-complex structures, para-Sasakian structures, para-Sasakian manifold, para-Kähler structures, left-invariant paracontact structures.
Received: 20.08.2019
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: N. K. Smolentsev, “Left-invariant para-sasakian structures on Lie groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 62, 27–37
Citation in format AMSBIB
\Bibitem{Smo19}
\by N.~K.~Smolentsev
\paper Left-invariant para-sasakian structures on Lie groups
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2019
\issue 62
\pages 27--37
\mathnet{http://mi.mathnet.ru/vtgu741}
\crossref{https://doi.org/10.17223/19988621/62/3}
Linking options:
  • https://www.mathnet.ru/eng/vtgu741
  • https://www.mathnet.ru/eng/vtgu/y2019/i62/p27
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :102
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025