Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2019, Number 62, Pages 119–134
DOI: https://doi.org/10.17223/19988621/62/10
(Mi vtgu748)
 

MECHANICS

Restrictions on stress components in the vertices of regular triangular and quadrangular pyramids embedded in elastic body

V. M. Pestrenin, I. V. Pestrenina, L. V. Landik

Perm State National Research University, Perm, Russian Federation
References:
Abstract: In the framework of continuous model of deformable bodies, each point of the continuum is associated with an elementary volume. The concepts of continuum mechanics regarding material properties and state parameters (stresses, strains) are applicable to this volume. In the paper, this statement extends to singular points which are the vertices of triangular and quadrangular pyramids embedded in an elastic body. The restrictions on the stress components at the considered points are studied. It is shown that the number of restrictions determines a non-classical formulation of the problem of mechanics of a deformable body. The dependences for material constants of the bonded elements, which lead to an unlimited increase in the stresses in the vertices of triangular and quadrangular pyramids immersed in an elastic medium, are found to be the same. Moreover, these dependences coincide with those known for a circular cone and a spatial edge. The investigation results will find application in the mechanics of composite materials when studying the samples by indentation or interaction with prismatic cantilevers.
Keywords: internal singular point, non-classical problem, stress concentration, elementary volume.
Received: 04.05.2019
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: V. M. Pestrenin, I. V. Pestrenina, L. V. Landik, “Restrictions on stress components in the vertices of regular triangular and quadrangular pyramids embedded in elastic body”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 62, 119–134
Citation in format AMSBIB
\Bibitem{PesPesLan19}
\by V.~M.~Pestrenin, I.~V.~Pestrenina, L.~V.~Landik
\paper Restrictions on stress components in the vertices of regular triangular and quadrangular pyramids embedded in elastic body
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2019
\issue 62
\pages 119--134
\mathnet{http://mi.mathnet.ru/vtgu748}
\crossref{https://doi.org/10.17223/19988621/62/10}
Linking options:
  • https://www.mathnet.ru/eng/vtgu748
  • https://www.mathnet.ru/eng/vtgu/y2019/i62/p119
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :66
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025