Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2022, Number 78, Pages 143–150
DOI: https://doi.org/10.17223/19988621/78/11
(Mi vtgu943)
 

This article is cited in 1 scientific paper (total in 1 paper)

MECHANICS

Formal derivation of mechanical motion magnitudes

V. D. Pavlov

Vladimir Electromechanical Plant, Vladimir, Russian Federation
Full-text PDF (567 kB) Citations (1)
References:
Abstract: Quantum-mechanical differential equations are considered, which are formal analogues of the Schrödinger equation. Their differences from each other and from the Schrödinger equation lie in the orders of partial derivatives. A characteristic feature of these equations is the presence of dimensional coefficients, which are the product of integer powers of mass and velocity, which allows us to consider them as quantities of mechanical motion. The logical regularity of the formation of these values is established. The applied nature of two of them - the integral Umov vector for kinetic energy and backward momentum — is considered.
Keywords: Umov vector, backward impulse, motion, magnitude, order.
Received: 23.11.2021
Accepted: July 12, 2022
Document Type: Article
UDC: 531.011
Language: Russian
Citation: V. D. Pavlov, “Formal derivation of mechanical motion magnitudes”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 78, 143–150
Citation in format AMSBIB
\Bibitem{Pav22}
\by V.~D.~Pavlov
\paper Formal derivation of mechanical motion magnitudes
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2022
\issue 78
\pages 143--150
\mathnet{http://mi.mathnet.ru/vtgu943}
\crossref{https://doi.org/10.17223/19988621/78/11}
Linking options:
  • https://www.mathnet.ru/eng/vtgu943
  • https://www.mathnet.ru/eng/vtgu/y2022/i78/p143
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:103
    Full-text PDF :39
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026