Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2023, Number 82, Pages 5–13
DOI: https://doi.org/10.17223/19988621/82/1
(Mi vtgu985)
 

MATHEMATICS

Localized eigenfunctions in the asymptotic model of the spectral problem

E. A. Molchanova

Khakas State University, Abakan, Russian Federation
References:
Abstract: Localized eigenfunctions in the two-dimensional spectral problem containing a small parameter with higher derivatives are constructed on the expected solution form. Localization in this context means that the solution exponentially decays in both directions starting from the "weakest" point or line. The constructions are based on the algorithm introduced by V.P. Maslov. A modification of this algorithm for the thin shell theory problems is given as an application. The paper shows implementation of the algorithm to obtain formulas giving eigenvalues and corresponding eigenfunctions. An example of solving a specific problem is given, illustrating stages of the applied asymptotic model.
Keywords: spectral problem, asymptotic method, localization of eigenfunctions.
Received: 18.05.2022
Accepted: March 31, 2023
Document Type: Article
UDC: 519.6
MSC: 41А60
Language: Russian
Citation: E. A. Molchanova, “Localized eigenfunctions in the asymptotic model of the spectral problem”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 82, 5–13
Citation in format AMSBIB
\Bibitem{Mol23}
\by E.~A.~Molchanova
\paper Localized eigenfunctions in the asymptotic model of the spectral problem
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2023
\issue 82
\pages 5--13
\mathnet{http://mi.mathnet.ru/vtgu985}
\crossref{https://doi.org/10.17223/19988621/82/1}
Linking options:
  • https://www.mathnet.ru/eng/vtgu985
  • https://www.mathnet.ru/eng/vtgu/y2023/i82/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :63
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025