Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 3, Pages 365–388
DOI: https://doi.org/10.20537/vm170307
(Mi vuu595)
 

This article is cited in 18 scientific papers (total in 18 papers)

MATHEMATICS

Ultrafilters and maximal linked systems

A. G. Chentsovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620002, Russia
b Institute of Radioelectronics and Information Technologies, Ural Federal University, ul. Mira, 32, Yekaterinburg, 620002, Russia
References:
Abstract: The family of maximal linked systems all elements of which are sets of an arbitrary lattice with “zero” and “unit” is considered; its subfamily composed of ultrafilters of that lattice is also considered. Relations between natural topologies used to equip the set of maximal linked systems and the set of the lattice ultrafilters are investigated. It is demonstrated that the last set under natural (for ultrafilter spaces) equipment is a subspace of the space of maximal linked systems under equipment with two comparable topologies one of which is similar to the topology used for the Wallman extension and the second corresponds (conceptually) to the scheme of Stone space in the case when the initial lattice is an algebra of sets. Properties of the resulting bitopological structure are detailed for the cases when our lattice is an algebra of sets, a topology, and a family of closed sets in a topological space.
Keywords: lattice of sets, topology, ultrafilter.
Received: 05.07.2017
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 28A33
Language: Russian
Citation: A. G. Chentsov, “Ultrafilters and maximal linked systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017), 365–388
Citation in format AMSBIB
\Bibitem{Che17}
\by A.~G.~Chentsov
\paper Ultrafilters and maximal linked systems
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 3
\pages 365--388
\mathnet{http://mi.mathnet.ru/vuu595}
\crossref{https://doi.org/10.20537/vm170307}
\elib{https://elibrary.ru/item.asp?id=30267248}
Linking options:
  • https://www.mathnet.ru/eng/vuu595
  • https://www.mathnet.ru/eng/vuu/v27/i3/p365
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025