Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, Volume 30, Issue 4, Pages 628–644
DOI: https://doi.org/10.35634/vm200407
(Mi vuu746)
 

This article is cited in 7 scientific papers (total in 7 papers)

MECHANICS

Nonintegrability of the problem of a spherical top rolling on a vibrating plane

A. A. Kilin, E. N. Pivovarova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (299 kB) Citations (7)
References:
Abstract: This paper investigates the rolling motion of a spherical top with an axisymmetric mass distribution on a smooth horizontal plane performing periodic vertical oscillations. For the system under consideration, equations of motion and conservation laws are obtained. It is shown that the system admits two equilibrium points corresponding to uniform rotations of the top about the vertical symmetry axis. The equilibrium point is stable when the center of mass is located below the geometric center, and is unstable when the center of mass is located above it. The equations of motion are reduced to a system with one and a half degrees of freedom. The reduced system is represented as a small perturbation of the problem of the Lagrange top motion. Using Melnikov’s method, it is shown that the stable and unstable branches of the separatrix intersect transversally with each other. This suggests that the problem is nonintegrable. Results of computer simulation of the top dynamics near the unstable equilibrium point are presented.
Keywords: spherical top, vibrating plane, Lagrange case, separatrix splitting, Melnikov's integral, nonintegrability, chaos, period advance map.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FEWS-2020-0009
This work was carried out in Ural Mathematical Center within the framework of the state assignment of the Ministry of Science and Higher Education of Russia (FEWS-2020-0009).
Received: 25.09.2020
Bibliographic databases:
Document Type: Article
UDC: 531.36
MSC: 70E18, 37J30
Language: Russian
Citation: A. A. Kilin, E. N. Pivovarova, “Nonintegrability of the problem of a spherical top rolling on a vibrating plane”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020), 628–644
Citation in format AMSBIB
\Bibitem{KilPiv20}
\by A.~A.~Kilin, E.~N.~Pivovarova
\paper Nonintegrability of the problem of a spherical top rolling on a vibrating plane
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2020
\vol 30
\issue 4
\pages 628--644
\mathnet{http://mi.mathnet.ru/vuu746}
\crossref{https://doi.org/10.35634/vm200407}
Linking options:
  • https://www.mathnet.ru/eng/vuu746
  • https://www.mathnet.ru/eng/vuu/v30/i4/p628
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:413
    Full-text PDF :217
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025