Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2025, Volume 35, Issue 2, Pages 261–281
DOI: https://doi.org/10.35634/vm250207
(Mi vuu926)
 

MATHEMATICS

On the special norm and completeness of spaces of continuous functions of several variables with Lipschitz–Hölder type constraints

V. I. Rodionov

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
References:
Abstract: Let $X_0\subseteq\mathbb R^n$ be a nonempty open set and $X_0\subseteq X\subseteq\overline X_0$. We admit that the set $X_0$ is unbounded and/or has a countable number of connected components. In this paper, we study some spaces of functions $f\colon X\to\mathbb R$ endowed with a special norm $\|\cdot\|$. The definition of the norm involves an $n$-dimensional vector $(\Delta x)^{-1}\Delta f$, which is an analogue of the relation $\frac{\Delta f}{\Delta x}$ generating the concept of the derivative of a function of one variable. The vector $(\Delta x)^{-1}\Delta f$ can be associated with the vector $\mathrm{grad}\,f(\cdot)$. The invertible matrix $\Delta x$ of order $n$ consists of special increments of the argument $x\in \mathbb R^n$, and the vector $\Delta f$ consists of special increments of the function $f$. A number of properties of the vector $(\Delta x)^{-1}\Delta f$ is proved, and an exact formula for its Euclidean norm is obtained. We prove the completeness with respect to a special norm $\|\cdot\|$ of the space $\mathcal G(X)$ consisting of continuous bounded functions $f\colon X\to\mathbb R$ and having additional restrictions of the Lipschitz–Hölder type. Such functions play an important role in solving mathematical physics problems. A number of important subspaces of the space $\mathcal G(X)$ is investigated. It is proved that two of them are Banach, and one of them, for $n=1$ and under certain conditions, is the closure of the space of piecewise linear functions $f\colon X\to\mathbb R$.
Keywords: Lipschitz–Hölder condition, frame, simplex, partition of a set, piecewise linear function
Received: 15.01.2025
Accepted: 29.03.2025
Bibliographic databases:
Document Type: Article
UDC: 517.982.22, 519.65
MSC: 26A16, 41A05
Language: Russian
Citation: V. I. Rodionov, “On the special norm and completeness of spaces of continuous functions of several variables with Lipschitz–Hölder type constraints”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:2 (2025), 261–281
Citation in format AMSBIB
\Bibitem{Rod25}
\by V.~I.~Rodionov
\paper On the special norm and completeness of spaces of continuous functions of several variables with Lipschitz–Hölder type constraints
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2025
\vol 35
\issue 2
\pages 261--281
\mathnet{http://mi.mathnet.ru/vuu926}
\crossref{https://doi.org/10.35634/vm250207}
Linking options:
  • https://www.mathnet.ru/eng/vuu926
  • https://www.mathnet.ru/eng/vuu/v35/i2/p261
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóêè
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025