Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 6(37), Pages 7–17
DOI: https://doi.org/10.15688/jvolsu1.2016.6.1
(Mi vvgum141)
 

Mathematics

Finding the vertices of the sum of two polytopes

T. A. Angelov

Saint Petersburg State University
References:
Abstract: This work introduces a criterion for finding the vertices of a Minkowski sum of two polytopes $\mathrm{conv} A \subset \mathbb{R}^n$ and $\mathrm{conv} B \subset \mathbb{R}^n$, where $A = \{ a_0, \dots , a_m \}$ and $B = \{ b_0, b_1, \dots, b_{m_b}\}$. These convex sets are also denoted as V-polytopes. The constructions used in the present paper stay entirely in the space of V-polytopes, without any transitions to their duals, that is H-polytopes (half-space representation).
Before formulating a general criterion, we consider a special case—the sum of a polytope $\mathrm{conv} A$ and a line segment $\mathrm{conv}\{b_0, b_1\}$.
The following lemma holds. Fix $i$ in $0:m$.
1) If $v \not \in K(a_i)$, then $a_i + v$ is a vertex of $\mathrm{conv} A_v$.
    Else, $a_i + v$ is not a vertex of $\mathrm{conv} A_v$.
2) If $-v \not \in K(a_i)$, then $a_i$ is a vertex of $\mathrm{conv} A_v$.
    Else, $a_i$ is not a vertex of $\mathrm{conv} A_v$.
Here $A_v = \{ a_0, a_1, \dots , a_m, a_0 + v, a_1 + v, \dots , a_m + v\}$, $v = b_1 - b_0$,
$$ K(a_i) := K( \mathrm{conv} \left\{ a_0 - a_i, a_1 - a_i, \dots, a_{i-1} - a_i, a_{i+1} - a_i, \dots, a_m - a_i \right\}), $$
where $K(C)$ is a cone generated by set $C$.
Using an analogical scheme of reasoning as in the lemma, we present the main result of the this work.
Theorem. Fix $i \in 0:m$ and $j \in 0:m_b$. The point $a_i + b_j$ is a vertex of the polytope $\mathrm{conv} A + \mathrm{conv}B$ if and only if cones $K(b_j)$ and $K(a_i)$ do not intersect.
The suggested criterion possesses an intuitive graphic interpretation and is proven by elementary tools of convex anaylsis. In conclusion we note, that the theorem can be applied solving a linear programming problem. Moreover, the latter turns out to be dual to a similar LP problem, constructed using the properties of H-polytopes.
Keywords: polytope, conical hull, Minkowski sum, vertex, linear programming.
Funding agency Grant number
Saint Petersburg State University 9.38.205.2014
Document Type: Article
UDC: 519.852.2
BBC: 22.135
Language: Russian
Citation: T. A. Angelov, “Finding the vertices of the sum of two polytopes”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 6(37), 7–17
Citation in format AMSBIB
\Bibitem{Ang16}
\by T.~A.~Angelov
\paper Finding the vertices of the sum of two polytopes
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 6(37)
\pages 7--17
\mathnet{http://mi.mathnet.ru/vvgum141}
\crossref{https://doi.org/10.15688/jvolsu1.2016.6.1}
Linking options:
  • https://www.mathnet.ru/eng/vvgum141
  • https://www.mathnet.ru/eng/vvgum/y2016/i6/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025