Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 6(37), Pages 28–39
DOI: https://doi.org/10.15688/jvolsu1.2016.6.3
(Mi vvgum143)
 

Mathematics

Method of the optimal control in the solution of a variational problem

A. S. Ignatånko, B. E. Levitsii

Kuban State University, Krasnodar
References:
Abstract: The paper provides a complete solution for the variational problem of finding a revolution surface of minimum area in the metric $|x|^{-n+1}$, corresponding extreme metric for $p$-module of family of surfaces that separate boundary components of a spherical ring.
The surface area in the $n$-dimensional Euclidean space $R^n$, defined by the rotation of the curve $\gamma$ around the polar axis, calculated in the metric $\frac {1}{|x|^{n-1}}$, $x \in R^n$, $n \geq 3$, expressed by the formula

\begin{equation*} S(\gamma) = (n-1)\omega_{n-1} \int_{t_0}^{t_1} \sin^{n-2} \varphi (t) \sqrt{(\varphi^{'}(t))^2+(\rho^{'} (t))^2} dt, \end{equation*}
where $\omega_n$ is a volume of $n$-dimensional sphere of radius 1, $\gamma$ is the curve of the family of planar piecewise-smooth curves, given by the parametric equation $z(t)=e^{\rho (t) + i \varphi (t)}$, $t \in [t_0,t_1]$, is lying in the closed set $\overline{B_r} = \{ z: r \leq |z| \leq r(1+\delta), \varphi \in [ \varphi_0, \varphi_1 ] \}$, $( 0< \varphi_0 < \varphi_1 \leq \pi)$ and is connecting the point $z(t_0)=r(1+\delta)e^{i\varphi_0}$ and the point $z(t_1)=r(1+\delta_1)e^{i\varphi_1}$, $0 \leq \delta_1 \leq \delta$.
The problem is to find the infimum of the functional $S(\gamma)$ in the described class of curves with natural condition that we consider only curves for which in the points of differentiability $\varphi^{'}(t) \geq 0$ and $\rho^{'}(t) \leq 0$. The method of optimal controls by L. Pontryagin [2] is applied for search for optimal trajectories. The properties of the hyperelliptic integral of a special type, arising in the solution of the variational problem, were investigated.
Keywords: minimal surface, surface of revolution, method of the optimal control, optimal trajectory, hyperelliptic integral.
Document Type: Article
UDC: 517.53:517.977
BBC: 22.161.5
Language: Russian
Citation: A. S. Ignatånko, B. E. Levitsii, “Method of the optimal control in the solution of a variational problem”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 6(37), 28–39
Citation in format AMSBIB
\Bibitem{IgnLev16}
\by A.~S.~Ignatånko, B.~E.~Levitsii
\paper Method of the optimal control in the solution of a variational problem
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 6(37)
\pages 28--39
\mathnet{http://mi.mathnet.ru/vvgum143}
\crossref{https://doi.org/10.15688/jvolsu1.2016.6.3}
Linking options:
  • https://www.mathnet.ru/eng/vvgum143
  • https://www.mathnet.ru/eng/vvgum/y2016/i6/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025