Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2022, Volume 25, Issue 1, Pages 21–33
DOI: https://doi.org/10.15688/mpcm.jvolsu.2022.1.2
(Mi vvgum323)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics and mechanics

$k$-Yamabe and quasi $k$-Yamabe solitons on imperfect fluid generalized Robertson — Walker spacetime

M. D. Siddiqi, Sh. A. Siddiqui

Jazan University
Full-text PDF (356 kB) Citations (2)
Abstract: In this research article, we estimate the behavior of an imperfect fluid generalized Robertson — Walker spacetime ($GRW$) in terms of $k$-Yamabe soliton with torseforming vector field. Besides this, we evaluate a specific situation when the potential vector filed $\xi$ is of the form of gradient i.e., $\xi = \mathrm{grad}\,(\Psi)$, we extract a Laplace — Poisson equation, and Liouville equation from the quasi $k$-Yamabe soliton equation.
Keywords: $k$-Yamabe soliton, quasi $k$-Yamabe soliton, imperfect fluid generalized Robertson — Walker spacetime, torse-forming vector field, Einstein manifold.
Received: 14.02.2021
Bibliographic databases:
Document Type: Article
UDC: 514.7
BBC: 22.151
Language: English
Citation: M. D. Siddiqi, Sh. A. Siddiqui, “$k$-Yamabe and quasi $k$-Yamabe solitons on imperfect fluid generalized Robertson — Walker spacetime”, Mathematical Physics and Computer Simulation, 25:1 (2022), 21–33
Citation in format AMSBIB
\Bibitem{SidSid22}
\by M.~D.~Siddiqi, Sh.~A.~Siddiqui
\paper $k$-Yamabe and quasi $k$-Yamabe solitons on imperfect fluid generalized Robertson --- Walker spacetime
\jour Mathematical Physics and Computer Simulation
\yr 2022
\vol 25
\issue 1
\pages 21--33
\mathnet{http://mi.mathnet.ru/vvgum323}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2022.1.2}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4409618}
Linking options:
  • https://www.mathnet.ru/eng/vvgum323
  • https://www.mathnet.ru/eng/vvgum/v25/i1/p21
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025