Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, Issue 2(27), Pages 17–30
DOI: https://doi.org/10.15688/jvolsu1.2015.2.2
(Mi vvgum35)
 

This article is cited in 2 scientific papers (total in 2 papers)

Applied mathematics

Numerical study of the stability of equilibrium surfaces using NumPy package

V. A. Klyachin, E. G. Grigoreva

Volgograd State University
Full-text PDF (403 kB) Citations (2)
References:
Abstract: The article is devoted to numerical investigation of stability for equilibrium surfaces. These surfaces are models for surfaces between two media. Moreover, these surfaces are extremal surfaces for the functional of the follwing type
$$ W({\mathcal M})=A({\mathcal M})+G({\mathcal M}), $$
where
$$ A({\mathcal M})=\int\limits_{{\mathcal M}}\alpha(x)d\mathcal M, \quad G({\mathcal M})=\int\limits_{\Omega_1}\varphi(x)dx, $$
and domains $\Omega\subset R^{n+1}$, $\Omega_1\subset \Omega$ such that $\partial \Omega_1\cap\partial \Omega = {\mathcal M}$. The problem of study a stability of equilibrium surfaces is reduced to investigate the value of kind
$$ \inf_{h}\frac{\int\limits_{\mathcal M}|\nabla h|^2d\mathcal M}{\int\limits_{\mathcal M}||A||^2h^2d\mathcal M}, $$
where $||A||$ is norm of second fudamental form for surface $\mathcal M\subset R^n$, and gradient $\nabla h$ is calculated in Riemann metric of $\mathcal M$. Using piecewise linear interpolation this value can be approximated by the value
$$ \min_{\bar{h}}\frac{\langle A\bar{h},\bar{h}\rangle}{\langle B\bar{h},\bar{h}\rangle}, $$
where $A,B$ are symmetric positive definite matrixes. The article describes Python package NDimVar implemented on the basis package NumPy for solution of the above pointed problem. In addition, the study of stability for minimal surface of catenoid
$$ \left\{
\begin{array}{lcl} x_1&=&a \cosh\frac{t}{a}\cos\varphi\\ x_2&=&a \cosh\frac{t}{a}\sin\varphi\\ x_3&=&t, \; |t|<T. \end{array}
\right. $$
is considered. It is calculated maximal value of $T$ under which catenoid is stable minimal surface.
Keywords: extremal surface, triangulation, piecewise linear approximation, main frequency, package NumPy.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02517
Document Type: Article
UDC: 517.957, 514.752
BBC: 32.973.26-018.2
Language: Russian
Citation: V. A. Klyachin, E. G. Grigoreva, “Numerical study of the stability of equilibrium surfaces using NumPy package”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, no. 2(27), 17–30
Citation in format AMSBIB
\Bibitem{KlyGri15}
\by V.~A.~Klyachin, E.~G.~Grigoreva
\paper Numerical study of the stability of equilibrium surfaces using NumPy package
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2015
\issue 2(27)
\pages 17--30
\mathnet{http://mi.mathnet.ru/vvgum35}
\crossref{https://doi.org/10.15688/jvolsu1.2015.2.2}
Linking options:
  • https://www.mathnet.ru/eng/vvgum35
  • https://www.mathnet.ru/eng/vvgum/y2015/i2/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025