Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 1(32), Pages 48–56
DOI: https://doi.org/10.15688/jvolsu1.2016.1.5
(Mi vvgum94)
 

Information technologies

Mathematical model for reconstructing a damaged bitmap

A. A. Klyachin

Volgograd State University
References:
Abstract: The paper describes an algorithm for restoring a damaged image, based on the use of maximum and minimum Lipschitz function defined in a flat area. Namely, we will assume that the image is given by the function $u=f(x,y)$, where $x=0,...,M$, $y=0,...,N$, and its value is a brightness level of point $ (x, y) $, which varies in the range of $ u = 0, ..., U $. We consider the current window of the size $ (2n + 1) \times (2n + 1) $ with center at the point $ (x, y) $, where $ n = 1,2, ... $ As the output luminance of the point corresponding to the center of the window, take the value
$$ F_{\alpha}^{n}(x,y,z)=\min\{f(i,j)+\alpha\sqrt{(x-i)^2+(y-j)^2+z^2}:|x-i|\leq n, |y-j|\leq n\}, $$
where $x=n,...,M-n$, $y=n,...,N-n$. To suppress the local minima we can use the dual function that looks like this
$$ G_{\alpha}^{n}(x,y,z)=\max\{f(i,j)-\alpha\sqrt{(x-i)^2+(y-j)^2+z^2}:|x-i|\leq n, |y-j|\leq n\}. $$
Next, it is necessary to define for each current point $(x,y)$ which of these functions must be applied. To do this, we proceed as follows. In one pass through all the points $(x,y)$ are determined by the image of a local maximum and local minimum points. Repeated passage of this information is taken into account for the determination of the function used. Response $H(x,y,z)$ of our filter is calculated according to the rule
$$ H(x,y,z)= \begin{cases} F_{\alpha,n}(x,y,z), & if\ (x,y)\ is\ point\ of\ local\ maximum,\\ G_{\alpha,n}(x,y,z), & if\ (x,y)\ is\ point\ of\ local\ minimum,\\ f(x,y), & otherwise. \end{cases} $$

We show examples of operation of this algorithm for images with varying degrees of damage. We consider images having $20\%$$75\%$ of the defects. Presented algorithm quite well restores the image with different types of lesions: how random nature with a uniform distribution over the entire image (impulse noise), and concentrated in certain areas.
Keywords: data recovery, impulse noise, median filter, bitmap, Lipschitz condition.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02517-р_поволжье_а
Document Type: Article
UDC: 517.951, 519.632
BBC: 22.161, 22.19
Language: Russian
Citation: A. A. Klyachin, “Mathematical model for reconstructing a damaged bitmap”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 1(32), 48–56
Citation in format AMSBIB
\Bibitem{Kly16}
\by A.~A.~Klyachin
\paper Mathematical model for reconstructing a damaged bitmap
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 1(32)
\pages 48--56
\mathnet{http://mi.mathnet.ru/vvgum94}
\crossref{https://doi.org/10.15688/jvolsu1.2016.1.5}
Linking options:
  • https://www.mathnet.ru/eng/vvgum94
  • https://www.mathnet.ru/eng/vvgum/y2016/i1/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025