Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2010, Issue 5, Pages 83–93 (Mi vyuru219)  

This article is cited in 3 scientific papers (total in 3 papers)

The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid

T. G. Sukacheva

Novgorod State University after Yaroslav the Wise
Full-text PDF (764 kB) Citations (3)
References:
Abstract: The Cauchy–Dirichlet problem for the hybrid of linearizied Oskolkov system and heat equation in the approximation of Oberbek–Bussinesq modeling thermoconvection of incompressible viscoelastic fluid is considered. This problem is investigated on the base of the theory of relatively $p$-sectorial operators and degenerate semigroups of operators. The theorem of existence of the unique solution of this problem is proved and the description of its extended phase space is received.
Keywords: Sobolev type equation, Oskolkov system of equations, an incompressible viscoelastic fluuid, relatively $p$-sectorial operator, extended phase space.
Received: 02.03.2010
Document Type: Article
UDC: 517.711.3
Language: Russian
Citation: T. G. Sukacheva, “The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5, 83–93
Citation in format AMSBIB
\Bibitem{Suk10}
\by T.~G.~Sukacheva
\paper The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2010
\issue 5
\pages 83--93
\mathnet{http://mi.mathnet.ru/vyuru219}
Linking options:
  • https://www.mathnet.ru/eng/vyuru219
  • https://www.mathnet.ru/eng/vyuru/y2010/i5/p83
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :134
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025