Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2015, Volume 8, Issue 3, Pages 116–126
DOI: https://doi.org/10.14529/mmp150307
(Mi vyuru279)
 

This article is cited in 13 scientific papers (total in 13 papers)

Mathematical Modelling

A numerical method for inverse spectral problems

S. I. Kadchenkoa, G. A. Zakirovab

a Magnitogorsk State Technical University named after G. I. Nosov, Magnitogorsk, Russian Federation
b South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: Basing on the Galerkin methods, we develop a new numerical method for solving the inverse spectral problems generated by discrete lower semibounded operators. The restrictions on the perturbing operator are relaxed in comparison with the method based on the theory of regular traces. A Fredholm integral equation of the first kind enables us to recover the values of the perturbing operator at the discretization nodes. We tested the method on spectral problems for the Sturm–Liouville operator, and the results of numerous simulations demonstrate its computational efficiency.
We found simple formulas for the eigenvalues of a discrete lower semibounded operator avoiding the roots of the corresponding secular equations. The calculation of eigenvalues of these operators can start at an arbitrary index independently of the (un)availability of the eigenvalues with smaller indices. For perturbed selfadjoint operators we can calculate eigenvalues with large indices when the Galerkin method becomes difficult to apply.
Keywords: inverse spectral problem; discrete selfadjoint operators; eigenvalues; eigenfunctions; ill-posed problems.
Received: 09.02.2015
Bibliographic databases:
Document Type: Article
UDC: 519.642.8
MSC: 47A75
Language: English
Citation: S. I. Kadchenko, G. A. Zakirova, “A numerical method for inverse spectral problems”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015), 116–126
Citation in format AMSBIB
\Bibitem{KadZak15}
\by S.~I.~Kadchenko, G.~A.~Zakirova
\paper A numerical method for inverse spectral problems
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2015
\vol 8
\issue 3
\pages 116--126
\mathnet{http://mi.mathnet.ru/vyuru279}
\crossref{https://doi.org/10.14529/mmp150307}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000422201600007}
\elib{https://elibrary.ru/item.asp?id=24078399}
Linking options:
  • https://www.mathnet.ru/eng/vyuru279
  • https://www.mathnet.ru/eng/vyuru/v8/i3/p116
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025