Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2018, Volume 11, Issue 4, Pages 31–40
DOI: https://doi.org/10.14529/mmp180402
(Mi vyuru454)
 

Mathematical Modelling

On the solution properties of boundary problem simulating thermocapillary flow

V. K. Andreev

Institute Computational Modelling SB RAS, Krasnoyarsk, Russian Federation
References:
Abstract: An inverse initial boundary value problem that arises as a result of mathematical modelling of specific thermocapillary 2D motion near an extreme point on solid wall is investigated. One of the velocity field components considered motion linearly depends on the longitudinal coordinate. This is a good agrement with the quadratic dependence of temperature field on the same coordinate. For stationary flow in the case of small Marangoni numbers the solution can be found by exact formulae. Nonstationary solution is found in quadratures in Laplace transformation space. The calculation results of zero and first solution approximations of this inverse stationary problem are given. If temperature on the solid wall is stabilized with time, then the nonstationary solution will converge to steady regime. The calculations are performed for different values of the Prandtl number and Bio number. Numerical results well support the theoretical conclusions on the example of modelling process arising the thermocapillary motion from a state of rest in the transformer oil layer. It is shown that choosing a specific thermal regime on a solid wall it is possible to control the fluid motion inside a layer.
Keywords: inverse problem, Laplace transform, thermocapillarity.
Received: 04.06.2018
Bibliographic databases:
Document Type: Article
UDC: 517.956.27
MSC: 35K20
Language: Russian
Citation: V. K. Andreev, “On the solution properties of boundary problem simulating thermocapillary flow”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 31–40
Citation in format AMSBIB
\Bibitem{And18}
\by V.~K.~Andreev
\paper On the solution properties of boundary problem simulating thermocapillary flow
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2018
\vol 11
\issue 4
\pages 31--40
\mathnet{http://mi.mathnet.ru/vyuru454}
\crossref{https://doi.org/10.14529/mmp180402}
\elib{https://elibrary.ru/item.asp?id=36487048}
Linking options:
  • https://www.mathnet.ru/eng/vyuru454
  • https://www.mathnet.ru/eng/vyuru/v11/i4/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :86
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025