Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2019, Volume 12, Issue 1, Pages 55–65
DOI: https://doi.org/10.14529/mmp190105
(Mi vyuru471)
 

Mathematical Modelling

Singular stochastic leontieff type equation in current velocities of solutions

E. Yu. Mashkov, D. N. Tyutyunov

Southwest State University, Kursk, Russian Federation
References:
Abstract: We investigate the system of stochastic differential equations, such that in the left-hand and right-hand sides there are rectangular constant matrices forming degenerate pencil. The system is considered in terms of current velocities of solution that are a direct analogue of physical velocity of deterministic processes. For investigation of this system we apply the Kronecker–Weierstrass transformation of the pencil of matrices coefficients to the canonical form that efficiently simplifies the investigation. As a result, the canonical system splits into independent sub-systems of four types. For the sub-systems corresponding to the Jordan singular Kronecker's cells, we obtain the explicit formulae of solutions and conditions for solvability. For the sub-system resolved with respect to symmetric derivatives, we apply the replacement of the metric in the subspace, then bring the system to a stochastic equation in the Ito form and prove the existence of its solution. As a result for the system under consideration we prove the existence of the solution theorem under some additional conditions on the coefficients.
Keywords: mean derivative, current velocity, Wiener process, stochastic Leontieff type equation.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00048_a
Received: 12.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.9+519.216.2
MSC: 60H30, 60H10
Language: Russian
Citation: E. Yu. Mashkov, D. N. Tyutyunov, “Singular stochastic leontieff type equation in current velocities of solutions”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 55–65
Citation in format AMSBIB
\Bibitem{MasTyu19}
\by E.~Yu.~Mashkov, D.~N.~Tyutyunov
\paper Singular stochastic leontieff type equation in current velocities of solutions
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2019
\vol 12
\issue 1
\pages 55--65
\mathnet{http://mi.mathnet.ru/vyuru471}
\crossref{https://doi.org/10.14529/mmp190105}
\elib{https://elibrary.ru/item.asp?id=37092203}
Linking options:
  • https://www.mathnet.ru/eng/vyuru471
  • https://www.mathnet.ru/eng/vyuru/v12/i1/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :116
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025