Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 282, Pages 74–91 (Mi znsl1508)  

A lemniscate as the spectrum of a perturbed shift

A. P. Kalupin, V. L. Oleinik

Saint-Petersburg State University
Abstract: The spectrum of the perturbed shift operator $T$, $T\colon f(n)\mapsto f(n+1)+a(n)f(n)$, in $\ell^2(\mathbf Z)$ is considered for $a(n)$ taking a finite set of values. It is proved that if all values of the function $a(n)$ have uniform frequencies on $\mathbf Z$, then the essential part of the spectrum fills a generalized lemniscate.
Received: 13.06.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 120, Issue 5, Pages 1685–1695
DOI: https://doi.org/10.1023/B:JOTH.0000018867.93853.ac
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. P. Kalupin, V. L. Oleinik, “A lemniscate as the spectrum of a perturbed shift”, Investigations on linear operators and function theory. Part 29, Zap. Nauchn. Sem. POMI, 282, POMI, St. Petersburg, 2001, 74–91; J. Math. Sci. (N. Y.), 120:5 (2004), 1685–1695
Citation in format AMSBIB
\Bibitem{KalOle01}
\by A.~P.~Kalupin, V.~L.~Oleinik
\paper A lemniscate as the spectrum of a~perturbed shift
\inbook Investigations on linear operators and function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 282
\pages 74--91
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1508}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1874883}
\zmath{https://zbmath.org/?q=an:1064.47035}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 120
\issue 5
\pages 1685--1695
\crossref{https://doi.org/10.1023/B:JOTH.0000018867.93853.ac}
Linking options:
  • https://www.mathnet.ru/eng/znsl1508
  • https://www.mathnet.ru/eng/znsl/v282/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :102
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025