Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 337, Pages 253–273 (Mi znsl192)  

On the distribution of the values of $L(1,\chi_{8p})$

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: The moments of pure imaginary and integer orders of the function $L(1,\chi_{8p})$, where $\chi_{8p}(n)=(8p/n)$ and $p$ runs over all primes $p>2$, are computed. In order to derive uniform variants of the theorems on moments, the extended Riemann hypothesis for the Dirichlet $L$-series must be used. As corollaries, the limiting distribution of the values of $\log L(1,\chi_{8p})$ is studied, and quantitative analogs of the $\Omega$-results for $L(1,\chi_{8p})$ are obtained. Previously, $\Omega$-results for $L(1,\chi_p)$ were proved by Bateman, Chowla, and Erdos (1949–1950) and by Barban (1966), and their methods can easily be transferred to $L(1,\chi_{8p})$. Bibliography: 27 titles.
Received: 26.06.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 3, Pages 3161–3171
DOI: https://doi.org/10.1007/s10958-007-0200-8
Bibliographic databases:
UDC: 511.466, 517.863
Language: Russian
Citation: O. M. Fomenko, “On the distribution of the values of $L(1,\chi_{8p})$”, Analytical theory of numbers and theory of functions. Part 21, Zap. Nauchn. Sem. POMI, 337, POMI, St. Petersburg, 2006, 253–273; J. Math. Sci. (N. Y.), 143:3 (2007), 3161–3171
Citation in format AMSBIB
\Bibitem{Fom06}
\by O.~M.~Fomenko
\paper On the distribution of the values of $L(1,\chi_{8p})$
\inbook Analytical theory of numbers and theory of functions. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 337
\pages 253--273
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl192}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2271967}
\zmath{https://zbmath.org/?q=an:1137.11056}
\elib{https://elibrary.ru/item.asp?id=9305284}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 3
\pages 3161--3171
\crossref{https://doi.org/10.1007/s10958-007-0200-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248149975}
Linking options:
  • https://www.mathnet.ru/eng/znsl192
  • https://www.mathnet.ru/eng/znsl/v337/p253
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :82
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026