|
|
Zapiski Nauchnykh Seminarov POMI, 2011, Volume 386, Pages 265–280
(Mi znsl3915)
|
|
|
|
Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$
V. V. Sevostianova Samara State University, Samara, Russia
Abstract:
We consider the conjugation action of the unitriangular subgroup $N$ of one of the following groups $\mathrm{Sp}_{2n}$, $\mathrm O_{2n}$, $\mathrm O_{2n+1}$, on the nilradical of a parabolic subalgebra in the corresponding Lie algebra. We introduce the notion of an extended base in the set of positive roots. To each root of the extended base there corresponds an invariant with respect to the adjoint action of $N$. We show that these invariants are algebraically independent. Also, we estimate trancendence degrees of these invariants. Bibl. 6 titles.
Key words and phrases:
invariants, parabolic subalgebra, triangular group, adjoint representation.
Received: 12.11.2010
Citation:
V. V. Sevostianova, “Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$”, Problems in the theory of representations of algebras and groups. Part 20, Zap. Nauchn. Sem. POMI, 386, POMI, St. Petersburg, 2011, 265–280; J. Math. Sci. (N. Y.), 180:3 (2012), 351–359
Linking options:
https://www.mathnet.ru/eng/znsl3915 https://www.mathnet.ru/eng/znsl/v386/p265
|
|