Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 386, Pages 265–280 (Mi znsl3915)  

Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$

V. V. Sevostianova

Samara State University, Samara, Russia
References:
Abstract: We consider the conjugation action of the unitriangular subgroup $N$ of one of the following groups $\mathrm{Sp}_{2n}$, $\mathrm O_{2n}$, $\mathrm O_{2n+1}$, on the nilradical of a parabolic subalgebra in the corresponding Lie algebra. We introduce the notion of an extended base in the set of positive roots. To each root of the extended base there corresponds an invariant with respect to the adjoint action of $N$. We show that these invariants are algebraically independent. Also, we estimate trancendence degrees of these invariants. Bibl. 6 titles.
Key words and phrases: invariants, parabolic subalgebra, triangular group, adjoint representation.
Received: 12.11.2010
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 180, Issue 3, Pages 351–359
DOI: https://doi.org/10.1007/s10958-011-0648-4
Bibliographic databases:
Document Type: Article
UDC: 512.815.4
Language: Russian
Citation: V. V. Sevostianova, “Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$”, Problems in the theory of representations of algebras and groups. Part 20, Zap. Nauchn. Sem. POMI, 386, POMI, St. Petersburg, 2011, 265–280; J. Math. Sci. (N. Y.), 180:3 (2012), 351–359
Citation in format AMSBIB
\Bibitem{Sev11}
\by V.~V.~Sevostianova
\paper Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$
\inbook Problems in the theory of representations of algebras and groups. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 386
\pages 265--280
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3915}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 180
\issue 3
\pages 351--359
\crossref{https://doi.org/10.1007/s10958-011-0648-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855701070}
Linking options:
  • https://www.mathnet.ru/eng/znsl3915
  • https://www.mathnet.ru/eng/znsl/v386/p265
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025