Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 113, Pages 76–96 (Mi znsl3942)  

This article is cited in 4 scientific papers (total in 4 papers)

On singularities of summable functions

A. B. Gulisashvili
Abstract: Let $\Phi=\{\varphi_n\}$ be a family of $L$-functions on $[0,1]$ endowed with the Lebesgue measure, satisfying the Bessel inequality. Given any sequence $\{\nu_n\}$ of non-negative real numbers we denote $\|f\|_{S(2,\nu)}=\{\sum c^*_n(f;\Phi)^2\nu_n\}^{1/2}$, $f\in L^1$, where $c^*_n$ is a non-increasing rearrangement of the sequence $\{|c_n(f;\Phi)|\}$ and $c_n(f;\Phi)$ are the Fourier coefficients of $f$ with respect to the family $\Phi$. We prove that if $\nu_n\to0$ then
$$ \inf_{T_\omega\in G_1}\|T_\omega f-P_\Delta f\|_{S(2,\nu)}=\inf_{T_r\in G_2}\|T_rf\|_{S(2,\nu)}=0. $$
Here $G_1$ denotes the group of all Lebesque measure preserving automorphisms $\omega$ of $[0,1]$, $T_\omega f=f\circ\omega$, $f\in L^1$, and $G_2$ denotes the group of all real measurable unimodular functions $r$ on $[0,1]$, $T_rf=r\cdot f$, $f\in L^1$. Moreover, $P_\Delta f=\int_0^1f\,dt$, $f\in L^1$. In the case when $\nu_n\to\infty$ and $\Phi$ is a complete orthogonal family in $L^2$, we prove several theorems on the localization of the property $\|f\|_{S(2,\nu)}=\infty$ on measurable subsets of $[0,1]$.
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: A. B. Gulisashvili, “On singularities of summable functions”, Investigations on linear operators and function theory. Part XI, Zap. Nauchn. Sem. LOMI, 113, "Nauka", Leningrad. Otdel., Leningrad, 1981, 76–96; J. Soviet Math., 22:6 (1983), 1743–1757
Citation in format AMSBIB
\Bibitem{Gul81}
\by A.~B.~Gulisashvili
\paper On singularities of summable functions
\inbook Investigations on linear operators and function theory. Part~XI
\serial Zap. Nauchn. Sem. LOMI
\yr 1981
\vol 113
\pages 76--96
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3942}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=629835}
\zmath{https://zbmath.org/?q=an:0474.42015|0517.42041}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 22
\issue 6
\pages 1743--1757
Linking options:
  • https://www.mathnet.ru/eng/znsl3942
  • https://www.mathnet.ru/eng/znsl/v113/p76
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025