Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 135, Pages 150–174 (Mi znsl4765)  

An operator approach to weighted norm inequalities for singular inegrals

S. R. Treil'
Abstract: A new approach to weighted norm inequalities for singular integral operators is developed. This appoach uses Hilbert space methods of Operator Theory.
Theorem. Let $R_1$ be a positive operator in $L^2(\mathbb T)$ with domain $\operatorname{Dom}R_1$ such that $\operatorname{Ker} R_1=\{0\}$, $0<\inf_n\|R_1z^n\|\leqslant\sup_n\|R_1z^n\|<+\infty$, and $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, k\ne n))>0$. Then there exists an operator $R_2$ satisfying 1. $\|R_2(\sum_{j\leqslant k\leqslant n}\hat f(k)z^k)\|\leqslant c\cdot\|R_1f\|$; 2. $\inf_n\|R_2z^n\|>0$; 3. $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, |k|<|n|))>0$. In case the system $\{Z^n\}_{n\in\mathbb Z}$ is fundamental in $\operatorname{Dom}R_1$ with respect to the graph norm $\|f\|^2_\Gamma\overset{\text{def}}{=}\|f\|^2+\|R_1f\|^2$ the conclusion of the above theorem can be strengthened: 4. $R_2$ is a bounded positive operator.
If in addition $\sup_{n\geqslant0}\|R_1S^nR_1^{-1}\|<\infty$, $S$ being the shift operator, i. e. $Sf=z\cdot f$, then $R_2$ is multiplication by a positive function $v$. This theorem generalizes the well-known Koosis theorem.
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.968
Language: Russian
Citation: S. R. Treil', “An operator approach to weighted norm inequalities for singular inegrals”, Investigations on linear operators and function theory. Part XIII, Zap. Nauchn. Sem. LOMI, 135, "Nauka", Leningrad. Otdel., Leningrad, 1984, 150–174
Citation in format AMSBIB
\Bibitem{Tre84}
\by S.~R.~Treil'
\paper An operator approach to weighted norm inequalities for singular inegrals
\inbook Investigations on linear operators and function theory. Part~XIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 135
\pages 150--174
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4765}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=741704}
\zmath{https://zbmath.org/?q=an:0577.47009}
Linking options:
  • https://www.mathnet.ru/eng/znsl4765
  • https://www.mathnet.ru/eng/znsl/v135/p150
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :76
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025