|
|
Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 135, Pages 150–174
(Mi znsl4765)
|
|
|
|
An operator approach to weighted norm inequalities for singular inegrals
S. R. Treil'
Abstract:
A new approach to weighted norm inequalities for singular integral operators is developed. This appoach uses Hilbert space methods of Operator Theory.
Theorem. Let $R_1$ be a positive operator in $L^2(\mathbb T)$ with domain $\operatorname{Dom}R_1$ such that $\operatorname{Ker} R_1=\{0\}$, $0<\inf_n\|R_1z^n\|\leqslant\sup_n\|R_1z^n\|<+\infty$, and $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, k\ne n))>0$. Then there exists an operator $R_2$ satisfying 1. $\|R_2(\sum_{j\leqslant k\leqslant n}\hat f(k)z^k)\|\leqslant c\cdot\|R_1f\|$; 2. $\inf_n\|R_2z^n\|>0$; 3. $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, |k|<|n|))>0$.
In case the system $\{Z^n\}_{n\in\mathbb Z}$ is fundamental in $\operatorname{Dom}R_1$ with respect to the graph norm $\|f\|^2_\Gamma\overset{\text{def}}{=}\|f\|^2+\|R_1f\|^2$ the conclusion of the above theorem can be strengthened: 4. $R_2$ is a bounded positive operator.
If in addition $\sup_{n\geqslant0}\|R_1S^nR_1^{-1}\|<\infty$, $S$ being the shift operator, i. e. $Sf=z\cdot f$, then $R_2$ is multiplication by a positive function $v$. This theorem generalizes the well-known Koosis theorem.
Citation:
S. R. Treil', “An operator approach to weighted norm inequalities for singular inegrals”, Investigations on linear operators and function theory. Part XIII, Zap. Nauchn. Sem. LOMI, 135, "Nauka", Leningrad. Otdel., Leningrad, 1984, 150–174
Linking options:
https://www.mathnet.ru/eng/znsl4765 https://www.mathnet.ru/eng/znsl/v135/p150
|
| Statistics & downloads: |
| Abstract page: | 203 | | Full-text PDF : | 76 | | References: | 2 |
|