Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 400, Pages 70–126 (Mi znsl5612)  

This article is cited in 5 scientific papers (total in 5 papers)

Overgroups of subsystem subgroups in exceptional groups: levels

N. A. Vavilov, A. V. Shchegolev

Saint-Petersburg State University, Saint-Petersburg, Russia
References:
Abstract: An embedding of root systems $\Delta\subseteq\Phi$ determines the corresponding regular embedding $G(\Delta,R)\le G(\Phi,R)$ of Chevalley groups, over an arbitrary commutative ring $R$. Denote by $E(\Delta,R)$ the elementary subgroup of $G(\Delta,R)$. In the present paper we initiate the study of intermediate subgroups $H$, $E(\Delta,R)\le H\le G(\Phi,R)$, provided that $\Phi=\mathrm{E_6,E_7,E_8,F}_4$ or $\mathrm G_2$, and there are no roots in $\Phi$ orthogonal to all of $\Delta$. There are 72 such pairs $(\Phi,\Delta)$. For $\mathrm F_4$ and $\mathrm G_2$ we assume, moreover, that $2\in R^*$ or $6\in R^*$, respectively. For all such subsystems $\Delta$ we construct the levels of intermediate subgroups. We prove that these levels are detemined by certain systems of ideals in $R$, one for each $\Delta$-equivalence class of roots in $\Phi\setminus\Delta$, and calculate all relations among these ideals, in each case.
Key words and phrases: exceptional Chevalley groups, subsystem subgroups, levels, root elements, Chevalley commutator formula, shapes of roots.
Received: 10.06.2011
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 192, Issue 2, Pages 164–195
DOI: https://doi.org/10.1007/s10958-013-1382-x
Bibliographic databases:
Document Type: Article
UDC: 513.6
Language: Russian
Citation: N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, Problems in the theory of representations of algebras and groups. Part 23, Zap. Nauchn. Sem. POMI, 400, POMI, St. Petersburg, 2012, 70–126; J. Math. Sci. (N. Y.), 192:2 (2013), 164–195
Citation in format AMSBIB
\Bibitem{VavShc12}
\by N.~A.~Vavilov, A.~V.~Shchegolev
\paper Overgroups of subsystem subgroups in exceptional groups: levels
\inbook Problems in the theory of representations of algebras and groups. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 400
\pages 70--126
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5612}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3029566}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 192
\issue 2
\pages 164--195
\crossref{https://doi.org/10.1007/s10958-013-1382-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884989403}
Linking options:
  • https://www.mathnet.ru/eng/znsl5612
  • https://www.mathnet.ru/eng/znsl/v400/p70
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:677
    Full-text PDF :166
    References:105
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025