Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 411, Pages 85–102 (Mi znsl5633)  

This article is cited in 3 scientific papers (total in 3 papers)

Towards a Monge–Kantorovich metric in noncommutative geometry

P. Martinettiab

a Università di Napoli Federico II, I-00185
b CMTP & Dipartimento di Matematica, Università di Roma Tor Vergata, I-00133
Full-text PDF (458 kB) Citations (3)
References:
Abstract: We investigate whether the identification between Connes' spectral distance in noncommutative geometry and the Monge–Kantorovich distance of order 1 in the theory of optimal transport – that has been pointed out by Rieffel in the commutative case – still makes sense in a noncommutative framework. To this aim, given a spectral triple $(\mathcal A,\mathcal H, D)$ with noncommutative $\mathcal A$, we introduce a “Monge–Kantorovich”-like distance $W_D$ on the space of states of $\mathcal A$, taking as a cost function the spectral distance $d_D$ between pure states. We show in full generality that $d_D\leq W_D$, and exhibit several examples where the equality actually holds true, in particular on the unit two-ball viewed as the state space of $M_2(\mathbb C)$. We also discuss $W_D$ in a two-sheet model (product of a manifold by $\mathbb C^2$), pointing towards a possible interpretation of the Higgs field as a cost function that does not vanish on the diagonal.
Key words and phrases: Connes distance, spectral triple, state space, Wasserstein distance.
Received: 28.02.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 196, Issue 2, Pages 165–174
DOI: https://doi.org/10.1007/s10958-013-1648-3
Bibliographic databases:
Document Type: Article
UDC: 517.972+514.7
Language: English
Citation: P. Martinetti, “Towards a Monge–Kantorovich metric in noncommutative geometry”, Representation theory, dynamical systems, combinatorial methods. Part XXII, Zap. Nauchn. Sem. POMI, 411, POMI, St. Petersburg, 2013, 85–102; J. Math. Sci. (N. Y.), 196:2 (2014), 165–174
Citation in format AMSBIB
\Bibitem{Mar13}
\by P.~Martinetti
\paper Towards a~Monge--Kantorovich metric in noncommutative geometry
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXII
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 411
\pages 85--102
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5633}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3048270}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 196
\issue 2
\pages 165--174
\crossref{https://doi.org/10.1007/s10958-013-1648-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897035386}
Linking options:
  • https://www.mathnet.ru/eng/znsl5633
  • https://www.mathnet.ru/eng/znsl/v411/p85
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025