Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 414, Pages 82–105 (Mi znsl5667)  

This article is cited in 3 scientific papers (total in 3 papers)

Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$

D. Yu. Eliseev, M. V. Ignat'ev

Samara State University, Samara, Russia
Full-text PDF (365 kB) Citations (3)
References:
Abstract: Let $G$ be a complex reductive algebraic group and $W$ its Weyl group. We prove that if $W$ are of type $A_n$, $F_4$ or $G_2$ and $w,w'$ are disjoint involutions in $W$, then the corresponding Kostant–Kumar polynomials do not coincide. As a consequence, we deduce that the tangent cones to the Schubert subvarieties $X_w$, $X_{w'}$ of the flag variety of $G$ do not coincide, too.
Key words and phrases: tangent cones, involutions in Weyl groups, Kostant–Kumar polynomials, Schubert varieties.
Received: 16.09.2012
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 199, Issue 3, Pages 289–301
DOI: https://doi.org/10.1007/s10958-014-1856-5
Bibliographic databases:
Document Type: Article
UDC: 512.74+512.813.4+512.542.74
Language: Russian
Citation: D. Yu. Eliseev, M. V. Ignat'ev, “Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$”, Problems in the theory of representations of algebras and groups. Part 25, Zap. Nauchn. Sem. POMI, 414, POMI, St. Petersburg, 2013, 82–105; J. Math. Sci. (N. Y.), 199:3 (2014), 289–301
Citation in format AMSBIB
\Bibitem{EliIgn13}
\by D.~Yu.~Eliseev, M.~V.~Ignat'ev
\paper Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$
\inbook Problems in the theory of representations of algebras and groups. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 414
\pages 82--105
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5667}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 199
\issue 3
\pages 289--301
\crossref{https://doi.org/10.1007/s10958-014-1856-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902306117}
Linking options:
  • https://www.mathnet.ru/eng/znsl5667
  • https://www.mathnet.ru/eng/znsl/v414/p82
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025