Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 429, Pages 193–201 (Mi znsl6075)  

On the class numbers of algebraic number fields

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $K$ be a number field of degree $n$ over $\mathbb Q$ and $d,h$, and $R$ be the absolute value of the discriminant, the class number, and the regulator, respectively, of $K$. It is known that if $K$ contains no quadratic subfield, then
$$ hR\gg\frac{d^{1/2}}{\log d}, $$
where the implied constant depends only on $n$. In Theorem 1 this lower estimate is improved for pure cubic fields.
Consider the family $\mathcal K_n$ where $K\in\mathcal K_n$ if $K$ is a totally real number field of degree $n$ whose normal closure has the symmetric group $S_n$ as its Galois group. Theorem 2: Fix $n\ge2$. There are infinitely many $K\in\mathcal K_n$ with
$$ h\gg d^{1/2}(\log\log d)^{n-1}/(\log d)^n, $$
where the implied constant depends only on $n$.
This is a somewhat greater improvement over W. Duke's analogous result with $h\gg d^{1/2}/(\log d)^n$ [MR 1966783 (2004g:11103)].
Key words and phrases: class number, Dedekind $\zeta$-function, generalized Riemann hypothesis.
Received: 15.07.2012
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 207, Issue 6, Pages 934–939
DOI: https://doi.org/10.1007/s10958-015-2416-3
Bibliographic databases:
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “On the class numbers of algebraic number fields”, Analytical theory of numbers and theory of functions. Part 29, Zap. Nauchn. Sem. POMI, 429, POMI, St. Petersburg, 2014, 193–201; J. Math. Sci. (N. Y.), 207:6 (2015), 934–939
Citation in format AMSBIB
\Bibitem{Fom14}
\by O.~M.~Fomenko
\paper On the class numbers of algebraic number fields
\inbook Analytical theory of numbers and theory of functions. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 429
\pages 193--201
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6075}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 207
\issue 6
\pages 934--939
\crossref{https://doi.org/10.1007/s10958-015-2416-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949626891}
Linking options:
  • https://www.mathnet.ru/eng/znsl6075
  • https://www.mathnet.ru/eng/znsl/v429/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025