Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 470, Pages 38–49 (Mi znsl6610)  

This article is cited in 8 scientific papers (total in 8 papers)

Unrelativised standard commutator formula

N. Vavilov

St. Petersburg State University
Full-text PDF (171 kB) Citations (8)
References:
Abstract: In the present note, which is a marginalia to the previous papers by Roozbeh Hazrat, Alexei Stepanov, Zuhong Zhang, and the author, I observe that for any ideals $A,B\unlhd R$ of a commutative ring $R$ and all $n\ge3$ the birelative standard commutator formula also holds in the unrelativised form, as $[E(n,A),\mathrm{GL}(n,B)]=[E(n,A),E(n,B)]$ and discuss some obvious corollaries thereof.
Key words and phrases: general linear group, congruence subgroups, elementary subgroups, standard commutator formulae.
Funding agency Grant number
Russian Science Foundation 17-11-01261
This publication is supported by Russian Science Foundation grant 17-11-01261.
Received: 23.10.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 4, Pages 527–534
DOI: https://doi.org/10.1007/s10958-019-04554-w
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: English
Citation: N. Vavilov, “Unrelativised standard commutator formula”, Problems in the theory of representations of algebras and groups. Part 33, Zap. Nauchn. Sem. POMI, 470, POMI, St. Petersburg, 2018, 38–49; J. Math. Sci. (N. Y.), 243:4 (2019), 527–534
Citation in format AMSBIB
\Bibitem{Vav18}
\by N.~Vavilov
\paper Unrelativised standard commutator formula
\inbook Problems in the theory of representations of algebras and groups. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 470
\pages 38--49
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6610}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 4
\pages 527--534
\crossref{https://doi.org/10.1007/s10958-019-04554-w}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074852524}
Linking options:
  • https://www.mathnet.ru/eng/znsl6610
  • https://www.mathnet.ru/eng/znsl/v470/p38
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025