Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 516, Pages 121–134 (Mi znsl7271)  

Eigenfunctions of the essential spectrum of the Laplace operator in an angle with the Robin–Neumann boundary conditions

M. A. Lyalinov, N. S. Fedorov

Saint Petersburg State University
References:
Abstract: This work studies eigenfunction problem of the Laplace operator in the angular domain with the Robin-type boundary condition on the upper side of the angle and the Neumann-type boundary condition on the bottom side of the angle. From the physical point of view, such eigenfunctions describe waves over sloping beach. Negative values of the spectral parameter were considered. We obtained the eigenfunction of the essential spectrum and studied a special case of eigenfunction, which are elementary functions. The Sommerfeld integral representation of an eigenfunction of the negative part of the essential spectrum of the Laplace operator was obtained. Moreover, we calculated it's asymptotic far away from the angle's vertex. It is bounded on the top side of the angle and vanishes exponentially in the angle's interior with its bottom side. So, the eigenfunction of essential spectrum behaves like a surface wave.
Key words and phrases: eigenfunctions, essential spectrum, Sommerfeld–Malyuzhinets's technique, functional difference equation.
Funding agency Grant number
Russian Science Foundation 22-11-00070
Received: 01.11.2022
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. A. Lyalinov, N. S. Fedorov, “Eigenfunctions of the essential spectrum of the Laplace operator in an angle with the Robin–Neumann boundary conditions”, Mathematical problems in the theory of wave propagation. Part 52, Zap. Nauchn. Sem. POMI, 516, POMI, St. Petersburg, 2022, 121–134
Citation in format AMSBIB
\Bibitem{LyaFed22}
\by M.~A.~Lyalinov, N.~S.~Fedorov
\paper Eigenfunctions of the essential spectrum of the Laplace operator in an angle with the Robin--Neumann boundary conditions
\inbook Mathematical problems in the theory of wave propagation. Part~52
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 516
\pages 121--134
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7271}
Linking options:
  • https://www.mathnet.ru/eng/znsl7271
  • https://www.mathnet.ru/eng/znsl/v516/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025