Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 524, Pages 74–93 (Mi znsl7357)  

This article is cited in 2 scientific papers (total in 2 papers)

$\mathrm{SDD}_1$ matrices and their generalizations

L. Yu. Kolotilina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (515 kB) Citations (2)
References:
Abstract: The paper considers the classes of $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices, which contain the class of $\mathrm{SDD}$ (strictly diagonally dominant) matrices and are contained in the class of nonsingular $\mathcal{H}$-matrices. New upper bounds on $\|A^{-1}\|_\infty$ for $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices $A$, generalizing known upper bounds for $S$-$\mathrm{SDD}$, $\mathrm{SDD}_1^*$, and $\mathrm{GSDD}_1$ matrices, are established and compared.
Key words and phrases: $l_\infty$-norm of the inverse, upper bounds, $\mathrm{SDD}_1$ matrices, $\mathrm{SDD}_1^*$ matrices, $\mathrm{GSDD}_1$ matrices, $\mathrm{GSDD}_1^*$ matrices, $SD$-$\mathrm{SDD}$ matrices, $\mathcal H$-matrices.
Received: 03.11.2023
English version:
Journal of Mathematical Sciences (New York), 2024, Volume 281, Issue 2, Pages 272–284
DOI: https://doi.org/10.1007/s10958-024-07100-5
Document Type: Article
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “$\mathrm{SDD}_1$ matrices and their generalizations”, Computational methods and algorithms. Part XXXVI, Zap. Nauchn. Sem. POMI, 524, POMI, St. Petersburg, 2023, 74–93; J. Math. Sci. (N. Y.), 281:2 (2024), 272–284
Citation in format AMSBIB
\Bibitem{Kol23}
\by L.~Yu.~Kolotilina
\paper $\mathrm{SDD}_1$ matrices and their generalizations
\inbook Computational methods and algorithms. Part~XXXVI
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 524
\pages 74--93
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7357}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2024
\vol 281
\issue 2
\pages 272--284
\crossref{https://doi.org/10.1007/s10958-024-07100-5}
Linking options:
  • https://www.mathnet.ru/eng/znsl7357
  • https://www.mathnet.ru/eng/znsl/v524/p74
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025