|
|
Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 54–70
(Mi znsl7389)
|
|
|
|
Reverse Carleson measures for Hardy spaces in the unit ball
E. Doubtsovab a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Abstract:
Let $H^p=H^p(B_d)$ denote the Hardy space in the open unit ball $B_d$ of $\mathbb{C}^d$, $d\ge 1$. We characterize the reverse Carleson measures for $H^p$, $1<p<\infty$, that is, we describe all finite positive Borel measures $\mu$ defined on the closed ball $\overline{B}_d$ and such that $$ \|f \|_{H^p} \le c \|f\|_{L^p(\overline{B}_d,\mu)} $$ for all $f\in H^p(B_d) \cap C(\overline{B}_d)$ and a universal constant $c>0$. Given a noninner holomorphic function $b: B_d \to B_1$, we obtain properties of the reverse Carleson measures for the de Branges–Rovnyak space $\mathcal{H}(b)$.
Key words and phrases:
Hardy spaces, reverse Carleson measures, de Branges–Rovnyak spaces.
Received: 23.09.2023
Citation:
E. Doubtsov, “Reverse Carleson measures for Hardy spaces in the unit ball”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 54–70; J. Math. Sci. (N. Y.), 284:6 (2024), 767–777
Linking options:
https://www.mathnet.ru/eng/znsl7389 https://www.mathnet.ru/eng/znsl/v527/p54
|
|