|
|
Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 71–83
(Mi znsl7390)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Paltanea type theorems on estimation by positive discrete functionals
L. N. Ikhsanov Saint Petersburg State University
Abstract:
The article is concerned with inequalities of the type \begin{equation*} |F(f)-F(e_0)f(x)| \le F(e_0)\omega_2(f, h), \end{equation*} there $F$ is a functional of the form $F(f)=\sum\limits_{y \in Y}\gamma(y)f(y)$, and $Y$ is an at most countable set with no accumulation points on $\mathbb{R}$, $\gamma : Y \to (0, \infty)$.
Key words and phrases:
positive operators, second modulus of continuity.
Received: 02.11.2022
Citation:
L. N. Ikhsanov, “Paltanea type theorems on estimation by positive discrete functionals”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 71–83; J. Math. Sci. (N. Y.), 284:6 (2024), 778–787
Linking options:
https://www.mathnet.ru/eng/znsl7390 https://www.mathnet.ru/eng/znsl/v527/p71
|
| Statistics & downloads: |
| Abstract page: | 113 | | Full-text PDF : | 58 | | References: | 50 |
|